RNA mA methylation participates in regulation of postnatal development of the mouse cerebellum.

Chunhui Ma, Mengqi Chang, Hongyi Lv, Zhi-Wei Zhang, Weilong Zhang, Xue He, Gaolang Wu, Shunli Zhao, Yao Zhang, Di Wang, Xufei Teng, Chunying Liu, Qing Li, Arne Klungland, Yamei Niu, Shuhui Song, Wei-Min Tong
Author Information
  1. Chunhui Ma: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
  2. Mengqi Chang: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
  3. Hongyi Lv: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  4. Zhi-Wei Zhang: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
  5. Weilong Zhang: State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
  6. Xue He: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
  7. Gaolang Wu: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
  8. Shunli Zhao: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
  9. Yao Zhang: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
  10. Di Wang: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
  11. Xufei Teng: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  12. Chunying Liu: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
  13. Qing Li: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
  14. Arne Klungland: Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, NO-0027, Norway.
  15. Yamei Niu: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China. niuym@ibms.pumc.edu.cn. ORCID
  16. Shuhui Song: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. songshh@big.ac.cn.
  17. Wei-Min Tong: Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China. wmtong@ibms.pumc.edu.cn.

Abstract

BACKGROUND: N-methyladenosine (mA) is an important epitranscriptomic mark with high abundance in the brain. Recently, it has been found to be involved in the regulation of memory formation and mammalian cortical neurogenesis. However, while it is now established that mA methylation occurs in a spatially restricted manner, its functions in specific brain regions still await elucidation.
RESULTS: We identify widespread and dynamic RNA mA methylation in the developing mouse cerebellum and further uncover distinct features of continuous and temporal-specific mA methylation across the four postnatal developmental processes. Temporal-specific mA peaks from P7 to P60 exhibit remarkable changes in their distribution patterns along the mRNA transcripts. We also show spatiotemporal-specific expression of mA writers METTL3, METTL14, and WTAP and erasers ALKBH5 and FTO in the mouse cerebellum. Ectopic expression of METTL3 mediated by lentivirus infection leads to disorganized structure of both Purkinje and glial cells. In addition, under hypobaric hypoxia exposure, Alkbh5-deletion causes abnormal cell proliferation and differentiation in the cerebellum through disturbing the balance of RNA mA methylation in different cell fate determination genes. Notably, nuclear export of the hypermethylated RNAs is enhanced in the cerebellum of Alkbh5-deficient mice exposed to hypobaric hypoxia.
CONCLUSIONS: Together, our findings provide strong evidence that RNA mA methylation is controlled in a precise spatiotemporal manner and participates in the regulation of postnatal development of the mouse cerebellum.

Keywords

References

Bioinformatics. 2013 Jun 15;29(12):1565-7 [PMID: 23589649]
Mol Cell. 2016 Feb 18;61(4):507-519 [PMID: 26876937]
Genes Dev. 2017 May 15;31(10):990-1006 [PMID: 28637692]
Nat Neurosci. 2011 Oct 30;14(12):1607-16 [PMID: 22037496]
Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E2047-56 [PMID: 27001847]
Nature. 2017 Aug 17;548(7667):338-342 [PMID: 28792938]
Nucleic Acids Res. 2015 Oct 30;43(19):e126 [PMID: 26101260]
Trends Neurosci. 1998 Sep;21(9):375-82 [PMID: 9735945]
Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
Cell Res. 2017 Sep;27(9):1115-1127 [PMID: 28809393]
Nat Methods. 2015 Aug;12(8):767-72 [PMID: 26121403]
Mol Biosyst. 2015 Jan;11(1):262-74 [PMID: 25370990]
Cell Res. 2017 Oct;27(10):1216-1230 [PMID: 28914256]
BMC Genomics. 2017 Apr 28;18(1):336 [PMID: 28454518]
Nature. 2017 Feb 23;542(7642):475-478 [PMID: 28192787]
Brain. 2012 Dec;135(Pt 12):3599-613 [PMID: 23250881]
Cell Res. 2017 Sep;27(9):1100-1114 [PMID: 28809392]
Science. 2015 Feb 27;347(6225):1002-6 [PMID: 25569111]
Genes Dev. 2015 Oct 1;29(19):2037-53 [PMID: 26404942]
Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
Brief Funct Genomic Proteomic. 2007 Jun;6(2):91-103 [PMID: 17584761]
Methods Mol Biol. 2016;1415:245-62 [PMID: 27115637]
Nat Neurosci. 2013 Aug;16(8):1042-8 [PMID: 23817550]
Cell. 2015 Jun 4;161(6):1388-99 [PMID: 26046440]
PLoS Biol. 2013 Nov;11(11):e1001720 [PMID: 24302887]
Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
Open Biol. 2017 Sep;7(9): [PMID: 28931651]
Genomics Proteomics Bioinformatics. 2013 Feb;11(1):8-17 [PMID: 23453015]
EMBO J. 2011 Apr 20;30(8):1520-35 [PMID: 21399614]
Nat Protoc. 2013 Jan;8(1):176-89 [PMID: 23288318]
Genes Dev. 2014 Nov 1;28(21):2407-20 [PMID: 25367036]
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
Cell Stem Cell. 2015 Mar 5;16(3):289-301 [PMID: 25683224]
Nature. 2015 Oct 22;526(7574):591-4 [PMID: 26458103]
Neuron. 2018 Jan 17;97(2):313-325.e6 [PMID: 29346752]
Nat Immunol. 2017 Oct;18(10):1094-1103 [PMID: 28846086]
Nucleic Acids Res. 2017 Jan 4;45(D1):D18-D24 [PMID: 27899658]
Nat Rev Mol Cell Biol. 2017 Jan;18(1):31-42 [PMID: 27808276]
Neuropsychopharmacology. 2017 Jun;42(7):1502-1510 [PMID: 28205605]
Nature. 2017 Sep 14;549(7671):273-276 [PMID: 28869969]
Genomics Proteomics Bioinformatics. 2017 Feb;15(1):14-18 [PMID: 28387199]
Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
Physiol Rev. 1996 Jul;76(3):839-85 [PMID: 8757790]
Genome Biol. 2008;9(9):R137 [PMID: 18798982]
Mol Cell. 2017 Sep 21;67(6):1059-1067.e4 [PMID: 28867294]
Cancer Cell. 2017 Apr 10;31(4):591-606.e6 [PMID: 28344040]
Hum Mol Genet. 2017 Jul 1;26(13):2398-2411 [PMID: 28398475]
Nat Commun. 2014 Nov 28;5:5630 [PMID: 25430002]
Mol Cell. 2010 May 28;38(4):576-89 [PMID: 20513432]
Cell Res. 2014 Dec;24(12):1403-19 [PMID: 25412662]
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):E2249-54 [PMID: 23716663]
Open Biol. 2016 Apr;6(4):160003 [PMID: 27249342]
Nucleic Acids Res. 2009 Jan;37(1):1-13 [PMID: 19033363]
Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
Cell Stem Cell. 2015 Dec 3;17(6):689-704 [PMID: 26526723]
Nature. 2012 Apr 29;485(7397):201-6 [PMID: 22575960]
Cell Stem Cell. 2014 Dec 4;15(6):707-19 [PMID: 25456834]
Methods Enzymol. 2006;411:134-93 [PMID: 16939790]
PLoS One. 2017 Mar 7;12(3):e0173421 [PMID: 28267806]
Mol Cell. 2013 Jan 10;49(1):18-29 [PMID: 23177736]
Nature. 2017 Mar 23;543(7646):573-576 [PMID: 28297716]
J Neurosci. 2016 Jun 22;36(25):6771-7 [PMID: 27335407]
Genome Biol. 2018 May 31;19(1):68 [PMID: 29855379]
Nat Biotechnol. 2011 Jan;29(1):24-6 [PMID: 21221095]
Mol Cell. 2017 Nov 2;68(3):504-514.e7 [PMID: 29107534]
RNA Biol. 2014;11(9):1180-8 [PMID: 25483034]
Neural Netw. 2008 Oct;21(8):1056-69 [PMID: 18603407]
Cell. 2012 Jun 22;149(7):1635-46 [PMID: 22608085]
Cell. 2017 Nov 2;171(4):877-889.e17 [PMID: 28965759]
Front Biosci (Landmark Ed). 2016 Jun 01;21(5):973-85 [PMID: 27100485]
Nat Neurosci. 2015 May;18(5):647-56 [PMID: 25849986]
Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
Brief Bioinform. 2013 Mar;14(2):178-92 [PMID: 22517427]
Nat Rev Neurosci. 2016 Sep;17(9):537-49 [PMID: 27334043]
Nature. 2014 Jan 2;505(7481):117-20 [PMID: 24284625]

Grants

  1. 31471288/National Natural Science Foundation of China
  2. 31471343/National Natural Science Foundation of China
  3. 2016-I2M-1-004/CAMS Initiative for Innovative Medicine
  4. 2016-I2M-2-001/CAMS Initiative for Innovative Medicine
  5. 2017141/Youth Innovation Promotion Association of the Chinese Academy of Sciences

MeSH Term

Adenosine
AlkB Homolog 5, RNA Demethylase
Animals
Cell Hypoxia
Cell Line
Cerebellum
Female
HEK293 Cells
Humans
Male
Methylation
Methyltransferases
Mice
Mice, Inbred C57BL
Mice, Knockout
RNA

Chemicals

RNA
N-methyladenosine
ALKBH5 protein, mouse
AlkB Homolog 5, RNA Demethylase
Methyltransferases
Mettl3 protein, mouse
Adenosine

Word Cloud

Similar Articles

Cited By