Early Transcriptomic Response to Phosphate Deprivation in Soybean Leaves as Revealed by RNA-Sequencing.

Houqing Zeng, Xiajun Zhang, Xin Zhang, Erxu Pi, Liang Xiao, Yiyong Zhu
Author Information
  1. Houqing Zeng: College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China. zenghq@hznu.edu.cn.
  2. Xiajun Zhang: College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China. zhangxiajun1992@163.com.
  3. Xin Zhang: College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China. z123767371@126.com.
  4. Erxu Pi: College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China. pierzaixian001@aliyun.com.
  5. Liang Xiao: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. 2016203037@njau.edu.cn.
  6. Yiyong Zhu: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. yiyong1973@njau.edu.cn. ORCID

Abstract

Low phosphate (Pi) availability is an important limiting factor affecting soybean production. However, the underlying molecular mechanisms responsible for low Pi stress response and tolerance remain largely unknown, especially for the early signaling events under low Pi stress. Here, a genome-wide transcriptomic analysis in soybean leaves treated with a short-term Pi-deprivation (24 h) was performed through high-throughput RNA sequencing (RNA-seq) technology. A total of 533 loci were found to be differentially expressed in response to Pi deprivation, including 36 mis-annotated loci and 32 novel loci. Among the differentially expressed genes (DEGs), 303 were induced and 230 were repressed by Pi deprivation. To validate the reliability of the RNA-seq data, 18 DEGs were randomly selected and analyzed by quantitative RT-PCR (reverse transcription polymerase chain reaction), which exhibited similar fold changes with RNA-seq. Enrichment analyses showed that 29 GO (Gene Ontology) terms and 8 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were significantly enriched in the up-regulated DEGs and 25 GO terms and 16 KEGG pathways were significantly enriched in the down-regulated DEGs. Some DEGs potentially involved in Pi sensing and signaling were up-regulated by short-term Pi deprivation, including five SPX-containing genes. Some DEGs possibly associated with water and nutrient uptake, hormonal and calcium signaling, protein phosphorylation and dephosphorylation and cell wall modification were affected at the early stage of Pi deprivation. The cis-elements of PHO (phosphatase) element, PHO-like element and P responsive element were present more frequently in promoter regions of up-regulated DEGs compared to that of randomly-selected genes in the soybean genome. Our transcriptomic data showed an intricate network containing transporters, transcription factors, kinases and phosphatases, hormone and calcium signaling components is involved in plant responses to early Pi deprivation.

Keywords

References

  1. Plant J. 2007 Jun;50(6):982-94 [PMID: 17461783]
  2. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  3. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1950-5 [PMID: 9465123]
  4. J Integr Plant Biol. 2014 Mar;56(3):192-220 [PMID: 24417933]
  5. Plant Cell. 2015 Mar;27(3):711-23 [PMID: 25724641]
  6. Plant Physiol. 1984 Oct;76(2):392-4 [PMID: 16663851]
  7. Plant J. 2017 Jun;90(5):868-885 [PMID: 27859875]
  8. Plant Physiol. 1993 Feb;101(2):339-344 [PMID: 12231689]
  9. Plant Physiol. 2011 Jul;156(3):997-1005 [PMID: 21571668]
  10. Plant Mol Biol. 2017 Jan;93(1-2):137-150 [PMID: 27815671]
  11. Plant Physiol. 2003 Jun;132(2):578-96 [PMID: 12805589]
  12. BMC Plant Biol. 2016 Jul 07;16(1):152 [PMID: 27389008]
  13. Front Plant Sci. 2015 Aug 11;6:600 [PMID: 26322054]
  14. Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11934-9 [PMID: 16085708]
  15. New Phytol. 2018 Jul;219(1):135-148 [PMID: 29658119]
  16. Planta. 2007 Jan;225(2):353-64 [PMID: 16906434]
  17. Ann Bot. 2010 Jul;106(1):215-22 [PMID: 20228090]
  18. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5732-7 [PMID: 11960029]
  19. Plant Physiol. 2001 Dec;127(4):1854-62 [PMID: 11743129]
  20. Nature. 2010 Jan 14;463(7278):178-83 [PMID: 20075913]
  21. Plant Cell Environ. 2009 Sep;32(9):1211-29 [PMID: 19389052]
  22. Plant Mol Biol. 2017 Feb;93(3):327-340 [PMID: 27878661]
  23. Plant Physiol. 2015 Oct;169(2):1397-404 [PMID: 26304850]
  24. Plant Physiol. 2005 Aug;138(4):2087-96 [PMID: 16006597]
  25. Plant Physiol. 2013 Oct;163(2):531-42 [PMID: 24014576]
  26. Plant Physiol Biochem. 2016 Dec;109:467-481 [PMID: 27825075]
  27. Nature. 2012 Aug 23;488(7412):535-9 [PMID: 22914168]
  28. Ann Bot. 2012 Jan;109(1):275-85 [PMID: 21948626]
  29. Plant Physiol. 2013 Feb;161(2):705-24 [PMID: 23197803]
  30. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  31. BMC Evol Biol. 2013 May 24;13:103 [PMID: 23705930]
  32. Cell. 2009 Sep 18;138(6):1184-94 [PMID: 19766570]
  33. Plant Physiol. 2011 Sep;157(1):279-91 [PMID: 21788361]
  34. Biochem J. 2009 Apr 28;420(1):57-65 [PMID: 19228119]
  35. Plant Physiol. 2015 Dec;169(4):2822-31 [PMID: 26424157]
  36. Annu Rev Plant Biol. 2011;62:185-206 [PMID: 21370979]
  37. Plant Physiol. 2011 Jul;156(3):1033-40 [PMID: 21487049]
  38. Ann Bot. 2014 Sep;114(3):477-88 [PMID: 25074550]
  39. Plant Cell. 2013 Oct;25(10):4061-74 [PMID: 24122828]
  40. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  41. Plant Sci. 2015 Sep;238:273-85 [PMID: 26259194]
  42. Plant Cell. 2014 Apr 1;26(4):1586-1597 [PMID: 24692424]
  43. New Phytol. 2012 Dec;196(4):1098-1108 [PMID: 22937909]
  44. Plant Physiol. 2006 Oct;142(2):750-61 [PMID: 16891548]
  45. Funct Plant Biol. 2009 May;36(5):409-430 [PMID: 32688656]
  46. Front Plant Sci. 2017 May 24;8:877 [PMID: 28596783]
  47. New Phytol. 2017 Jan;213(2):739-750 [PMID: 27579668]
  48. Plant Physiol. 2012 Aug;159(4):1634-43 [PMID: 22740613]
  49. J Exp Bot. 2002 Mar;53(368):473-81 [PMID: 11847246]
  50. Plant Cell. 2009 Nov;21(11):3554-66 [PMID: 19934380]
  51. J Plant Physiol. 2010 Oct 15;167(15):1289-97 [PMID: 20591534]
  52. Plant Cell Environ. 2007 Jan;30(1):85-112 [PMID: 17177879]
  53. New Phytol. 2014 Sep;203(4):1146-1160 [PMID: 24865627]
  54. Plant Physiol. 1995 Apr;107(4):1313-1321 [PMID: 12228438]
  55. Curr Opin Biotechnol. 2018 Feb;49:156-162 [PMID: 28889038]
  56. Nat Plants. 2016 Apr 04;2:16033 [PMID: 27249565]
  57. Plant Sci. 2016 Jul;248:82-91 [PMID: 27181950]
  58. Plant Cell. 2011 Apr;23(4):1523-35 [PMID: 21521698]
  59. Plant Cell Environ. 2015 Jan;38(1):172-87 [PMID: 24894834]
  60. Ann Bot. 2016 Oct 1;118(4):593-605 [PMID: 27255099]
  61. Plant Cell. 2013 Nov;25(11):4285-304 [PMID: 24249833]
  62. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  63. BMC Genomics. 2016 Mar 05;17:192 [PMID: 26944721]
  64. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  65. Plant Physiol. 2016 Jan;170(1):499-514 [PMID: 26586833]
  66. Ann Bot. 2004 Sep;94(3):323-32 [PMID: 15292042]
  67. Curr Opin Plant Biol. 2013 May;16(2):205-12 [PMID: 23566853]
  68. Nucleic Acids Res. 2015 Jul 1;43(W1):W50-6 [PMID: 25904632]
  69. Genes Dev. 2001 Aug 15;15(16):2122-33 [PMID: 11511543]
  70. BMC Genomics. 2013 Apr 01;14:210 [PMID: 23547783]
  71. Nat Commun. 2016 Mar 31;7:11095 [PMID: 27029856]
  72. Nature. 2014 Oct 16;514(7522):367-71 [PMID: 25162526]
  73. Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6571-8 [PMID: 26554016]
  74. Plant Physiol. 2007 Dec;145(4):1460-70 [PMID: 17932308]
  75. Plant Physiol. 2003 Jul;132(3):1260-71 [PMID: 12857808]
  76. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14947-52 [PMID: 25271326]
  77. Cell. 2006 Jun 30;125(7):1347-60 [PMID: 16814720]
  78. Mol Plant. 2016 Mar 7;9(3):396-416 [PMID: 26714050]
  79. PLoS Genet. 2014 Jan;10(1):e1004061 [PMID: 24391523]
  80. Plant Physiol. 2014 Mar;164(3):1484-98 [PMID: 24394776]
  81. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6765-70 [PMID: 16617110]
  82. Nat Plants. 2015 Aug 04;1:15109 [PMID: 27250542]
  83. FEBS Lett. 2003 Feb 27;537(1-3):128-32 [PMID: 12606044]
  84. New Phytol. 2012 Mar;193(4):842-51 [PMID: 22403821]
  85. Annu Rev Plant Biol. 2014;65:95-123 [PMID: 24579991]
  86. Front Plant Sci. 2015 Jan 07;5:771 [PMID: 25709610]
  87. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14953-8 [PMID: 25271318]
  88. BMC Genomics. 2013 Feb 04;14:77 [PMID: 23379779]

MeSH Term

Gene Expression Regulation, Plant
Phosphates
Plant Leaves
Glycine max
Stress, Physiological
Transcriptome

Chemicals

Phosphates