Genetic and transcriptional evolution alters cancer cell line drug response.

Uri Ben-David, Benjamin Siranosian, Gavin Ha, Helen Tang, Yaara Oren, Kunihiko Hinohara, Craig A Strathdee, Joshua Dempster, Nicholas J Lyons, Robert Burns, Anwesha Nag, Guillaume Kugener, Beth Cimini, Peter Tsvetkov, Yosef E Maruvka, Ryan O'Rourke, Anthony Garrity, Andrew A Tubelli, Pratiti Bandopadhayay, Aviad Tsherniak, Francisca Vazquez, Bang Wong, Chet Birger, Mahmoud Ghandi, Aaron R Thorner, Joshua A Bittker, Matthew Meyerson, Gad Getz, Rameen Beroukhim, Todd R Golub
Author Information
  1. Uri Ben-David: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  2. Benjamin Siranosian: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  3. Gavin Ha: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  4. Helen Tang: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  5. Yaara Oren: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  6. Kunihiko Hinohara: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  7. Craig A Strathdee: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  8. Joshua Dempster: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  9. Nicholas J Lyons: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  10. Robert Burns: Dana-Farber Cancer Institute, Boston, MA, USA.
  11. Anwesha Nag: Dana-Farber Cancer Institute, Boston, MA, USA.
  12. Guillaume Kugener: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  13. Beth Cimini: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  14. Peter Tsvetkov: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  15. Yosef E Maruvka: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  16. Ryan O'Rourke: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  17. Anthony Garrity: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  18. Andrew A Tubelli: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  19. Pratiti Bandopadhayay: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  20. Aviad Tsherniak: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  21. Francisca Vazquez: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  22. Bang Wong: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  23. Chet Birger: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  24. Mahmoud Ghandi: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  25. Aaron R Thorner: Dana-Farber Cancer Institute, Boston, MA, USA.
  26. Joshua A Bittker: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  27. Matthew Meyerson: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  28. Gad Getz: Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  29. Rameen Beroukhim: Broad Institute of Harvard and MIT, Cambridge, MA, USA. rameen_beroukhim@dfci.harvard.edu.
  30. Todd R Golub: Broad Institute of Harvard and MIT, Cambridge, MA, USA. golub@broadinstitute.org.

Abstract

Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.

References

  1. Science. 1999 Oct 15;286(5439):531-7 [PMID: 10521349]
  2. Br J Cancer. 2004 Jul 19;91(2):355-8 [PMID: 15188009]
  3. Biostatistics. 2004 Oct;5(4):557-72 [PMID: 15475419]
  4. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  5. Biostatistics. 2007 Jan;8(1):118-27 [PMID: 16632515]
  6. Genome Biol. 2006;7(7):R61 [PMID: 16859521]
  7. Nat Genet. 2006 Sep;38(9):1043-8 [PMID: 16921376]
  8. Int J Cancer. 1976 Jan 15;17(1):62-70 [PMID: 175022]
  9. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  10. Cancer Res. 1990 Sep 15;50(18):6075-86 [PMID: 1975513]
  11. Nature. 2009 Nov 5;462(7269):108-12 [PMID: 19847166]
  12. Bioinformatics. 2010 Feb 15;26(4):493-500 [PMID: 20022975]
  13. Nat Rev Cancer. 2010 Apr;10(4):241-53 [PMID: 20300105]
  14. Bioinformatics. 2010 Aug 15;26(16):2069-70 [PMID: 20562413]
  15. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  16. Nat Genet. 2011 May;43(5):491-8 [PMID: 21478889]
  17. Cell. 2011 Aug 19;146(4):633-44 [PMID: 21854987]
  18. Nat Rev Drug Discov. 2011 Aug 31;10(9):712 [PMID: 21892149]
  19. J Biomol Screen. 2012 Feb;17(2):266-74 [PMID: 21956170]
  20. Nature. 2012 Mar 28;483(7391):570-5 [PMID: 22460902]
  21. Nature. 2012 Mar 28;483(7391):603-7 [PMID: 22460905]
  22. Nat Biotechnol. 2012 May;30(5):413-21 [PMID: 22544022]
  23. Genome Res. 2012 Oct;22(10):1995-2007 [PMID: 22637570]
  24. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  25. Nucleic Acids Res. 2013 Jan;41(Database issue):D955-61 [PMID: 23180760]
  26. Nat Biotechnol. 2013 Mar;31(3):213-9 [PMID: 23396013]
  27. Nat Protoc. 2013 May;8(5):989-97 [PMID: 23619890]
  28. Cell. 2013 Aug 29;154(5):1151-1161 [PMID: 23993102]
  29. Nature. 2013 Dec 19;504(7480):389-93 [PMID: 24284626]
  30. Nat Methods. 2014 Apr;11(4):396-8 [PMID: 24633410]
  31. Nat Methods. 2014 Aug;11(8):783-784 [PMID: 25075903]
  32. Nature. 2014 Jul 31;511(7511):543-50 [PMID: 25079552]
  33. Nucleic Acids Res. 2015 Feb 18;43(3):e19 [PMID: 25428359]
  34. PLoS One. 2014 Dec 01;9(12):e113169 [PMID: 25437005]
  35. Nature. 2015 Feb 19;518(7539):422-6 [PMID: 25470049]
  36. J Natl Cancer Inst. 2015 Mar 31;107(7):null [PMID: 25828948]
  37. Nat Med. 2015 May;21(5):440-8 [PMID: 25849130]
  38. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  39. PLoS Biol. 2015 Jun 09;13(6):e1002165 [PMID: 26057340]
  40. Nat Genet. 2015 Oct;47(10):1212-9 [PMID: 26301495]
  41. Cancer Discov. 2015 Nov;5(11):1210-23 [PMID: 26482930]
  42. Nature. 2015 Dec 3;528(7580):84-7 [PMID: 26570998]
  43. Nat Chem Biol. 2016 Feb;12(2):109-16 [PMID: 26656090]
  44. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  45. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  46. Nature. 2016 May 18;533(7603):333-7 [PMID: 27193678]
  47. Bioinformatics. 2016 Oct 15;32(20):3210-3212 [PMID: 27354701]
  48. Cancer Cell. 2016 Aug 8;30(2):214-228 [PMID: 27478040]
  49. Nat Protoc. 2016 Sep;11(9):1757-74 [PMID: 27560178]
  50. JCI Insight. 2016 Nov 17;1(19):e87062 [PMID: 27882345]
  51. Nat Protoc. 2017 Apr;12(4):828-863 [PMID: 28333914]
  52. Science. 2017 Mar 31;355(6332): [PMID: 28360267]
  53. Nat Genet. 2017 Nov;49(11):1567-1575 [PMID: 28991255]
  54. Nat Genet. 2017 Dec;49(12):1779-1784 [PMID: 29083409]
  55. Nat Commun. 2017 Nov 6;8(1):1324 [PMID: 29109393]
  56. Nucleic Acids Res. 2018 Jan 4;46(D1):D221-D228 [PMID: 29126148]
  57. Cell. 2017 Nov 30;171(6):1437-1452.e17 [PMID: 29195078]
  58. J Biol Chem. 1973 Sep 10;248(17):6251-3 [PMID: 4353636]
  59. J Natl Cancer Inst. 1973 Nov;51(5):1409-16 [PMID: 4357757]

Grants

  1. R01 CA188228/NCI NIH HHS
  2. R01 CA219943/NCI NIH HHS
  3. U54 HG008097/NHGRI NIH HHS
  4. U54 HL127366/NHLBI NIH HHS

MeSH Term

Breast Neoplasms
Cell Proliferation
Cell Shape
Clone Cells
Evolution, Molecular
Genetic Variation
Genomic Instability
Humans
MCF-7 Cells
Reproducibility of Results
Transcription, Genetic