Hager Gaouda, Takashi Hamaji, Kayoko Yamamoto, Hiroko Kawai-Toyooka, Masahiro Suzuki, Hideki Noguchi, Yohei Minakuchi, Atsushi Toyoda, Asao Fujiyama, Hisayoshi Nozaki, David Roy Smith
Plastid genomes are not normally celebrated for being large. But researchers are steadily uncovering algal lineages with big and, in rare cases, enormous plastid DNAs (ptDNAs), such as volvocine green algae. Plastome sequencing of five different volvocine species has revealed some of the largest, most repeat-dense plastomes on record, including that of Volvox carteri (∼525 kb). Volvocine algae have also been used as models for testing leading hypotheses on organelle genome evolution (e.g., the mutational hazard hypothesis), and it has been suggested that ptDNA inflation within this group might be a consequence of low mutation rates and/or the transition from a unicellular to multicellular existence. Here, we further our understanding of plastome size variation in the volvocine line by examining the ptDNA sequences of the colonial species Yamagishiella unicocca and Eudorina sp. NIES-3984 and the multicellular Volvox africanus, which are phylogenetically situated between species with known ptDNA sizes. Although V. africanus is closely related and similar in multicellular organization to V. carteri, its ptDNA was much less inflated than that of V. carteri. Synonymous- and noncoding-site nucleotide substitution rate analyses of these two Volvox ptDNAs suggest that there are drastically different plastid mutation rates operating in the coding versus intergenic regions, supporting the idea that error-prone DNA repair in repeat-rich intergenic spacers is contributing to genome expansion. Our results reinforce the idea that the volvocine line harbors extremes in plastome size but ultimately shed doubt on some of the previously proposed hypotheses for ptDNA inflation within the lineage.
Curr Biol. 2017 Jun 5;27(11):1677-1684.e4
[PMID:
28528908]
Mol Biol Evol. 2014 May;31(5):1228-36
[PMID:
24557444]
Mol Biol Evol. 2007 Aug;24(8):1586-91
[PMID:
17483113]
PLoS One. 2015 Nov 12;10(11):e0142632
[PMID:
26562165]
Nat Commun. 2014 Sep 24;5:4956
[PMID:
25249442]
Genome Biol Evol. 2017 Jun 1;9(6):1766-1780
[PMID:
28854633]
PLoS One. 2014 Sep 15;9(9):e107679
[PMID:
25222863]
Nucleic Acids Res. 2017 Jul 3;45(W1):W6-W11
[PMID:
28486635]
BMC Evol Biol. 2015 Dec 01;15:264
[PMID:
26620802]
Curr Biol. 2017 Dec 18;27(24):3771-3782.e6
[PMID:
29199074]
Am Nat. 2015 Apr;185(4):507-24
[PMID:
25811085]
Mol Biol Evol. 2010 Oct;27(10):2244-56
[PMID:
20430860]
Mol Biol Evol. 2016 Mar;33(3):800-8
[PMID:
26615203]
Genome Announc. 2018 Mar 22;6(12):
[PMID:
29567741]
Mol Biol Evol. 2008 Jan;25(1):120-30
[PMID:
17998254]
Genome Biol Evol. 2013;5(12):2540-8
[PMID:
24336424]
Nucleic Acids Res. 2001 Jun 15;29(12):2607-18
[PMID:
11410670]
Bioinformatics. 2010 Mar 1;26(5):589-95
[PMID:
20080505]
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3254-8
[PMID:
19223580]
New Phytol. 2018 Jul;219(2):491-495
[PMID:
29577316]
Mol Phylogenet Evol. 2008 Dec;49(3):827-31
[PMID:
18838124]
Trends Genet. 2007 Mar;23(3):119-25
[PMID:
17280737]
Mol Biol Evol. 2013 Apr;30(4):793-7
[PMID:
23300255]
Genome Biol Evol. 2010 Jul 12;2:240-56
[PMID:
20624729]
Curr Biol. 2017 Jul 10;27(13):R651-R653
[PMID:
28697364]
Science. 2006 Mar 24;311(5768):1727-30
[PMID:
16556832]
Plant Cell. 1993 Sep;5(9):1125-38
[PMID:
8400878]
Genome Biol Evol. 2013;5(6):1079-86
[PMID:
23645599]
J Phycol. 2012 Jun;48(3):491-513
[PMID:
27011065]
Cell. 2016 Sep 8;166(6):1397-1410.e16
[PMID:
27610566]
Science. 2003 Nov 21;302(5649):1401-4
[PMID:
14631042]
Mol Phylogenet Evol. 2008 Jul;48(1):281-91
[PMID:
18430591]
Genome Biol Evol. 2017 Apr 1;9(4):993-999
[PMID:
31972029]
Dev Biol. 1983 Apr;96(2):493-506
[PMID:
6832480]
Mol Ecol. 2016 Aug;25(16):3769-75
[PMID:
27357487]
Genome Biol Evol. 2015 Feb 06;7(3):656-63
[PMID:
25663488]
Genome Biol Evol. 2015 Apr 13;7(5):1227-34
[PMID:
25869380]
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
[PMID:
15034147]