Integrating the Epigenome to Identify Drivers of Hepatocellular Carcinoma.

Ryan A Hlady, Aishwarya Sathyanarayan, Joyce J Thompson, Dan Zhou, Qunfeng Wu, Kien Pham, Jeong-Heon Lee, Chen Liu, Keith D Robertson
Author Information
  1. Ryan A Hlady: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN. ORCID
  2. Aishwarya Sathyanarayan: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN.
  3. Joyce J Thompson: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN.
  4. Dan Zhou: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN.
  5. Qunfeng Wu: Department of Pathology and Laboratory Medicine, New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ.
  6. Kien Pham: Department of Pathology and Laboratory Medicine, New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ.
  7. Jeong-Heon Lee: Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN. ORCID
  8. Chen Liu: Department of Pathology and Laboratory Medicine, New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ.
  9. Keith D Robertson: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN.

Abstract

Disruption of epigenetic mechanisms has been intimately linked to the etiology of human cancer. Understanding how these epigenetic mechanisms (including DNA methylation [5mC], hydroxymethylation [5hmC], and histone post-translational modifications) work in concert to drive cancer initiation and progression remains unknown. Hepatocellular carcinoma (HCC) is increasing in frequency in Western countries but lacks efficacious treatments. The epigenome of HCC remains understudied. To better understand the epigenetic underpinnings of HCC, we performed a genome-wide assessment of 5mC, 5hmC, four histone modifications linked to promoter/enhancer function (H3K4me1, H3K27ac, H3K4me3, and H3K27me3), and transcription across normal, cirrhotic, and HCC liver tissue. Implementation of bioinformatic strategies integrated these epigenetic marks with each other and with transcription to provide a comprehensive epigenetic profile of how and when the liver epigenome is perturbed during progression to HCC. Our data demonstrate significant deregulation of epigenetic regulators combined with disruptions in the epigenome hallmarked by profound loss of 5hmC, locus-specific gains in 5mC and 5hmC, and markedly altered histone modification profiles, particularly remodeling of enhancers. Data integration demonstrates that these marks collaborate to influence transcription (e.g., hyper-5hmC in HCC-gained active enhancers is linked to elevated expression) of genes regulating HCC proliferation. Two such putative epigenetic driver loci identified through our integrative approach, COMT and FMO3, increase apoptosis and decrease cell viability in liver-derived cancer cell lines when ectopically re-expressed. Conclusion: Altogether, integration of multiple epigenetic parameters is a powerful tool for identifying epigenetically regulated drivers of HCC and elucidating how epigenome deregulation contributes to liver disease and HCC.

References

  1. Cancer Lett. 2004 Aug 30;212(2):195-201 [PMID: 15341023]
  2. Nucleic Acids Res. 2005 Oct 13;33(18):5868-77 [PMID: 16224102]
  3. Pharmacogenet Genomics. 2007 May;17(5):331-8 [PMID: 17429315]
  4. Int J Mol Med. 2007 Jul;20(1):65-73 [PMID: 17549390]
  5. Nat Rev Cancer. 2007 Aug;7(8):599-612 [PMID: 17646865]
  6. Carcinogenesis. 2009 Jan;30(1):71-7 [PMID: 19015200]
  7. Bioinformatics. 2009 Aug 1;25(15):1952-8 [PMID: 19505939]
  8. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  9. Nature. 2011 May 5;473(7345):43-9 [PMID: 21441907]
  10. Nat Rev Cancer. 2011 Sep 23;11(10):726-34 [PMID: 21941284]
  11. Nat Genet. 2012 May 27;44(7):760-4 [PMID: 22634756]
  12. Bioinformatics. 2012 Aug 15;28(16):2180-1 [PMID: 22689387]
  13. Cancer Cell. 2012 Oct 16;22(4):524-35 [PMID: 23079661]
  14. Nat Protoc. 2012 Dec;7(12):2159-70 [PMID: 23196972]
  15. Clin Mol Hepatol. 2012 Dec;18(4):347-56 [PMID: 23323249]
  16. Genes Dev. 2013 Jun 15;27(12):1318-38 [PMID: 23788621]
  17. PLoS One. 2013 Aug 12;8(8):e67268 [PMID: 23950866]
  18. Hepatology. 2014 Nov;60(5):1767-75 [PMID: 24839253]
  19. Cancer Res. 2014 Jun 1;74(11):2913-21 [PMID: 24840647]
  20. Int J Clin Exp Pathol. 2014 Apr 15;7(5):2496-507 [PMID: 24966962]
  21. Oncotarget. 2014 Aug 15;5(15):6338-52 [PMID: 25071008]
  22. Br J Clin Pharmacol. 2015 Feb;79(2):241-53 [PMID: 25125025]
  23. Hepatology. 2015 Jan;61(1):191-9 [PMID: 25142309]
  24. Genes Dev. 2014 Oct 1;28(19):2103-19 [PMID: 25223896]
  25. Oncotarget. 2014 Oct 15;5(19):9425-43 [PMID: 25294808]
  26. Cell Rep. 2014 Nov 20;9(4):1554-66 [PMID: 25453758]
  27. Hepatology. 2015 Jun;61(6):1945-56 [PMID: 25645722]
  28. Nature. 2015 Feb 19;518(7539):317-30 [PMID: 25693563]
  29. Tumour Biol. 2016 Jan;37(1):211-6 [PMID: 26189841]
  30. Eur J Nutr. 2017 Mar;56(2):535-544 [PMID: 26578530]
  31. Oncotarget. 2016 Jan 12;7(2):1927-46 [PMID: 26646321]
  32. Epigenetics. 2017 Mar 4;12(3):215-225 [PMID: 28059585]
  33. Cell. 2017 Jun 15;169(7):1327-1341.e23 [PMID: 28622513]
  34. Nat Protoc. 2017 Dec;12(12):2478-2492 [PMID: 29120462]
  35. Cancer Res. 2018 Feb 1;78(3):645-658 [PMID: 29217762]
  36. PLoS One. 2017 Dec 14;12(12):e0189102 [PMID: 29240787]
  37. Nature. 2018 Jan 25;553(7689):515-520 [PMID: 29342133]
  38. Semin Liver Dis. 2018 Feb;38(1):41-50 [PMID: 29471564]
  39. Genome Biol. 2018 Mar 27;19(1):43 [PMID: 29587824]

Grants

  1. R01 DK110024/NIDDK NIH HHS
  2. P30 DK084567/NIDDK NIH HHS
  3. R01 AA027179/NIAAA NIH HHS

MeSH Term

Carcinoma, Hepatocellular
Case-Control Studies
DNA Methylation
Epigenome
Histone Code
Humans
Liver
Liver Cirrhosis
Liver Neoplasms