Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice under starvation and submergence.

Yue Lu, Qiutao Xu, Yuan Liu, Yue Yu, Zhong-Yi Cheng, Yu Zhao, Dao-Xiu Zhou
Author Information
  1. Yue Lu: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  2. Qiutao Xu: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  3. Yuan Liu: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  4. Yue Yu: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  5. Zhong-Yi Cheng: Jingjie PTM BioLab Co. Ltd, Hangzhou, 310018, China.
  6. Yu Zhao: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  7. Dao-Xiu Zhou: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. dao-xiu.zhou@u-psud.fr. ORCID

Abstract

BACKGROUND: Histone lysine acylations by short-chain fatty acids are distinct from the widely studied histone lysine acetylation in chromatin, although both modifications are regulated by primary metabolism in mammalian cells. It remains unknown whether and how histone acylation and acetylation interact to regulate gene expression in plants that have distinct regulatory pathways of primary metabolism.
RESULTS: We identify 4 lysine butyrylation (Kbu) sites (H3K14, H4K12, H2BK42, and H2BK134) and 45 crotonylation (Kcr) sites on rice histones by mass spectrometry. Comparative analysis of genome-wide Kbu and Kcr and H3K9ac in combination with RNA sequencing reveals 25,306 genes marked by Kbu and Kcr in rice and more than 95% of H3K9ac-marked genes are marked by both. Kbu and Kcr are enriched at the 5' region of expressed genes. In rice under starvation and submergence, Kbu and Kcr appear to be less dynamic and display changes in different sets of genes compared to H3K9ac. Furthermore, Kbu seems to preferentially poise gene activation by external stresses, rather than internal circadian rhythm which has been shown to be tightly associated with H3K9ac. In addition, we show that rice sirtuin histone deacetylase (SRT2) is involved in the removal of Kcr.
CONCLUSION: Kbu, Kcr, and H3K9ac redundantly mark a large number of active genes but display different responses to external and internal signals. Thus, the proportion of rice histone lysine acetylation and acylation is dynamically regulated by environmental and metabolic cues, which may represent an epigenetic mechanism to fine-tune gene expression for plant adaptation.

References

  1. Mol Cell Proteomics. 2010 Oct;9(10):2125-39 [PMID: 20601493]
  2. Nucleic Acids Res. 2017 Dec 1;45(21):12241-12255 [PMID: 28981755]
  3. Mol Cell. 2015 Apr 16;58(2):203-15 [PMID: 25818647]
  4. PLoS One. 2013 Jun 25;8(6):e66807 [PMID: 23825566]
  5. Front Plant Sci. 2017 Dec 15;8:2147 [PMID: 29326743]
  6. Mol Cell. 2016 Apr 21;62(2):194-206 [PMID: 27105115]
  7. Elife. 2014 Nov 04;3: [PMID: 25369635]
  8. Cell. 1996 Nov 29;87(5):953-9 [PMID: 8945521]
  9. Mol Cell Proteomics. 2009 Jan;8(1):45-52 [PMID: 18753126]
  10. Plant J. 2011 Aug;67(3):434-46 [PMID: 21481028]
  11. Curr Opin Cell Biol. 2015 Apr;33:88-94 [PMID: 25588618]
  12. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  13. Science. 2009 May 22;324(5930):1076-80 [PMID: 19461003]
  14. Nat Plants. 2017 Oct;3(10):814-824 [PMID: 28947800]
  15. Biochem Biophys Res Commun. 2009 Oct 16;388(2):266-71 [PMID: 19664599]
  16. Cell. 2011 Sep 16;146(6):1016-28 [PMID: 21925322]
  17. Mol Plant. 2010 Jul;3(4):670-7 [PMID: 20457643]
  18. Genome Res. 2012 Jan;22(1):151-62 [PMID: 22110044]
  19. Plant Physiol. 2007 Jul;144(3):1508-19 [PMID: 17468215]
  20. Plant Cell. 2010 Jan;22(1):17-33 [PMID: 20086188]
  21. Plant Physiol. 2016 Aug;171(4):2810-25 [PMID: 27325665]
  22. J Exp Bot. 2016 Oct;67(18):5291-5300 [PMID: 27531885]
  23. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  24. J Genet Genomics. 2017 Sep 20;44(9):469-472 [PMID: 28958488]
  25. Mol Cell. 2016 Apr 21;62(2):169-180 [PMID: 27105113]
  26. Nat Chem Biol. 2017 Jan;13(1):21-29 [PMID: 27820805]
  27. Mol Cell Proteomics. 2007 May;6(5):812-9 [PMID: 17267393]
  28. Trends Plant Sci. 2015 Oct;20(10):614-621 [PMID: 26440431]
  29. Cell Res. 2017 Jul;27(7):898-915 [PMID: 28497810]
  30. Mol Cell Proteomics. 2012 May;11(5):100-7 [PMID: 22389435]
  31. Mol Cell. 2016 Apr 21;62(2):181-193 [PMID: 27105114]
  32. Nat Struct Mol Biol. 2017 Dec;24(12):1048-1056 [PMID: 29058708]
  33. Genome Biol. 2018 Sep 25;19(1):144 [PMID: 30253806]
  34. Plant Physiol. 2016 Jul;171(3):2041-54 [PMID: 27208249]
  35. Biochem Biophys Res Commun. 2016 Feb 5;470(2):439-444 [PMID: 26772883]
  36. Nat Methods. 2009 May;6(5):343-5 [PMID: 19363495]
  37. Curr Opin Plant Biol. 2012 Jun;15(3):308-14 [PMID: 22244081]
  38. Nat Rev Mol Cell Biol. 2017 Feb;18(2):90-101 [PMID: 27924077]

Grants

  1. 31730049/National Natural Science Foundation of China
  2. 2016YFD0100802/National Key Research and Development Program of China

MeSH Term

Acetylation
Gene Expression Regulation, Plant
Histones
Lysine
Oryza
Plant Proteins
Protein Processing, Post-Translational
Sirtuins
Stress, Physiological

Chemicals

Histones
Plant Proteins
Sirtuins
Lysine