Exploring biogeographic patterns of bacterioplankton communities across global estuaries.

Anwesha Ghosh, Punyasloke Bhadury
Author Information
  1. Anwesha Ghosh: Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India. ORCID
  2. Punyasloke Bhadury: Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India. ORCID

Abstract

Estuaries provide an ideal niche to study structure and function of bacterioplankton communities owing to the presence of a multitude of environmental stressors. Bacterioplankton community structures from nine global estuaries were compared to understand their broad-scale biogeographic patterns. Bacterioplankton community structure from four estuaries of Sundarbans, namely Mooriganga, Thakuran, Matla, and Harinbhanga, was elucidated using Illumina sequencing. Bacterioplankton communities from these estuaries were compared against available bacterioplankton sequence data from Columbia, Delaware, Jiulong, Pearl, and Hangzhou estuaries. All nine estuaries were dominated by Proteobacteria. Other abundant phyla included Bacteroidetes, Firmicutes, Acidobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, and Verrucomicrobia. The abundant bacterial phyla showed a ubiquitous presence across the estuaries. At class level, the overwhelming abundance of Gammaproteobacteria in the estuaries of Sundarbans and Columbia estuary clearly stood out amidst high abundance of Alphaproteobacteria observed in the other estuaries. Abundant bacterial families including Rhodobacteriaceae, Shingomonadaceae, Acidobacteriaceae, Vibrionaceae, and Xanthomondaceae also showed ubiquitous presence in the studied estuaries. However, rare taxa including Chloroflexi, Tenericutes, Nitrospirae, and Deinococcus-Thermus showed clear site-specific distribution patterns. Such distribution patterns were also reinstated by nMDS ordination plots. Such clustering patterns could hint toward the potential role of environmental parameters and substrate specificity which could result in distinct bacterioplankton communities at specific sites. The ubiquitous presence of abundant bacterioplankton groups along with their strong correlation with surface water temperature and dissolved nutrient concentrations indicates the role of such environmental parameters in shaping bacterioplankton community structure in estuaries. Overall, studies on biogeographic patters of bacterioplankton communities can provide interesting insights into ecosystem functioning and health of global estuaries.

Keywords

Associated Data

GENBANK | KX014028; KX014568

References

Front Microbiol. 2015 May 11;6:445 [PMID: 26029186]
Front Microbiol. 2016 Mar 03;7:250 [PMID: 26973627]
FEMS Microbiol Rev. 2011 Mar;35(2):275-98 [PMID: 20738403]
Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15136-41 [PMID: 15469911]
Appl Environ Microbiol. 2000 Dec;66(12):5116-22 [PMID: 11097877]
Int J Syst Evol Microbiol. 2002 Jul;52(Pt 4):1133-1139 [PMID: 12148617]
Genom Data. 2016 Nov 24;11:39-42 [PMID: 27942457]
Environ Microbiol. 2015 Oct;17(10):3898-913 [PMID: 25912020]
Nature. 2009 May 14;459(7244):193-9 [PMID: 19444205]
Appl Environ Microbiol. 2004 May;70(5):3163-6 [PMID: 15128584]
Appl Environ Microbiol. 1999 Jul;65(7):3192-204 [PMID: 10388721]
Appl Environ Microbiol. 2011 Jun;77(11):3846-52 [PMID: 21460107]
Saline Syst. 2010 Aug 11;6:8 [PMID: 20699005]
PLoS Genet. 2008 Nov;4(11):e1000255 [PMID: 19023400]
Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
Mar Pollut Bull. 2014 Jun 15;83(1):324-30 [PMID: 24820641]
Microbes Environ. 2015;30(2):180-8 [PMID: 25985930]
ISME J. 2012 Mar;6(3):554-63 [PMID: 22011718]
BMC Bioinformatics. 2014 Feb 05;15:41 [PMID: 24499292]
FEMS Microbiol Ecol. 2007 Sep;61(3):496-508 [PMID: 17627779]
Microbiologyopen. 2019 May;8(5):e00741 [PMID: 30303297]
Nucleic Acids Res. 2017 Jan 4;45(D1):D25-D31 [PMID: 27924010]
BMC Microbiol. 2010 Mar 22;10:85 [PMID: 20307274]
ISME J. 2012 Jan;6(1):183-94 [PMID: 21677692]
Ann Rev Mar Sci. 2014;6:195-219 [PMID: 24405426]
Clin Microbiol Rev. 2004 Oct;17(4):840-62, table of contents [PMID: 15489351]
Appl Environ Microbiol. 2004 Jun;70(6):3425-33 [PMID: 15184140]
ISME J. 2011 Oct;5(10):1571-9 [PMID: 21472016]
Bioessays. 2010 Jun;32(6):524-36 [PMID: 20486139]
Microbiol Res. 2015 Jun;175:16-23 [PMID: 25794799]
Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
ISME J. 2013 Jan;7(1):210-20 [PMID: 22895159]
Bioinformatics. 2012 Jul 15;28(14):1823-9 [PMID: 22556368]
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3951-6 [PMID: 18319345]
Environ Sci Pollut Res Int. 2018 Feb;25(6):5722-5739 [PMID: 29230649]
Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
Environ Microbiol. 2018 Aug;20(8):2709-2726 [PMID: 29521439]
Appl Environ Microbiol. 2007 Nov;73(21):6776-89 [PMID: 17827310]
PLoS One. 2011 Mar 02;6(3):e16943 [PMID: 21399677]
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D34-8 [PMID: 15608212]
PLoS One. 2014 Aug 21;9(8):e105592 [PMID: 25144201]
Int J Syst Bacteriol. 1999 Apr;49 Pt 2:601-10 [PMID: 10319482]
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
Commun Integr Biol. 2011 Jul;4(4):419-23 [PMID: 21966560]
Ecology. 2007 Jun;88(6):1365-78 [PMID: 17601129]
PLoS One. 2012;7(11):e49785 [PMID: 23189163]
Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
BMC Bioinformatics. 2016 Mar 22;17:135 [PMID: 27000765]
World J Microbiol Biotechnol. 2013 Dec;29(12):2325-34 [PMID: 23756871]
Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1463-8 [PMID: 9990046]
Trends Microbiol. 2006 Jun;14(6):257-63 [PMID: 16679014]
Nucleic Acids Res. 2011 Jan;39(Database issue):D19-21 [PMID: 21062823]
FEMS Microbiol Ecol. 2000 Jul 1;33(1):51-59 [PMID: 10922503]
Mol Ecol. 2007 Feb;16(4):867-80 [PMID: 17284217]
Bioinformatics. 2007 Nov 1;23(21):2949-51 [PMID: 17921491]
PLoS One. 2011 Mar 09;6(3):e17789 [PMID: 21408023]
J Phycol. 2014 Apr;50(2):328-40 [PMID: 26988190]
Appl Environ Microbiol. 1999 Aug;65(8):3721-6 [PMID: 10427073]
FEMS Microbiol Ecol. 2009 Sep;69(3):449-60 [PMID: 19619230]
ISME J. 2013 Oct;7(10):1899-911 [PMID: 23719153]
PLoS One. 2012;7(10):e46695 [PMID: 23056406]
Mar Pollut Bull. 2016 Oct 15;111(1-2):68-85 [PMID: 27480337]
BMC Microbiol. 2007 Nov 30;7:108 [PMID: 18047683]
PLoS One. 2013;8(1):e53608 [PMID: 23308262]
Sci Rep. 2016 Feb 10;6:20783 [PMID: 26861415]
PLoS One. 2008 Jul 02;3(7):e2566 [PMID: 18596968]
Appl Environ Microbiol. 1999 Sep;65(9):4220-2 [PMID: 10473438]
Nucleic Acids Res. 2011 Jan;39(Database issue):D28-31 [PMID: 20972220]
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11436-40 [PMID: 17592124]
ISME J. 2012 Dec;6(12):2245-56 [PMID: 22763649]
Appl Environ Microbiol. 2009 May;75(10):3263-70 [PMID: 19270149]
Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
Environ Microbiol. 2013 May;15(5):1302-17 [PMID: 23126454]
Appl Environ Microbiol. 2012 Mar;78(5):1361-9 [PMID: 22194288]
Microb Ecol. 2011 Aug;62(2):374-82 [PMID: 21286702]
Saline Syst. 2010 Feb 17;6(1):1 [PMID: 20163727]
ISME J. 2012 Aug;6(8):1499-505 [PMID: 22318305]
Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]
PLoS One. 2014 Sep 04;9(9):e106662 [PMID: 25188357]
ISME J. 2012 Jul;6(7):1440-4 [PMID: 22237546]

MeSH Term

Bacteria
Estuaries
Microbiota
Phylogeography
Plankton