Genomic analysis of DNA repair genes and androgen signaling in prostate cancer.
Kasey Jividen, Katarzyna Z Kedzierska, Chun-Song Yang, Karol Szlachta, Aakrosh Ratan, Bryce M Paschal
Author Information
Kasey Jividen: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
Katarzyna Z Kedzierska: Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
Chun-Song Yang: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
Karol Szlachta: Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
Aakrosh Ratan: Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
Bryce M Paschal: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA. paschal@virginia.edu.
中文译文
English
BACKGROUND: The cellular effects of androgen are transduced through the androgen receptor, which controls the expression of genes that regulate biosynthetic processes, cell growth, and metabolism. Androgen signaling also impacts DNA damage signaling through mechanisms involving gene expression and transcription-associated DNA damaging events. Defining the contributions of androgen signaling to DNA repair is important for understanding androgen receptor function, and it also has translational implications. METHODS: We generated RNA-seq data from multiple prostate cancer lines and used bioinformatic analyses to characterize androgen-regulated gene expression. We compared the results from cell lines with gene expression data from prostate cancer xenografts, and patient samples, to query how androgen signaling and prostate cancer progression influences the expression of DNA repair genes. We performed whole genome sequencing to help characterize the status of the DNA repair machinery in widely used prostate cancer lines. Finally, we tested a DNA repair enzyme inhibitor for effects on androgen-dependent transcription. RESULTS: Our data indicates that androgen signaling regulates a subset of DNA repair genes that are largely specific to the respective model system and disease state. We identified deleterious mutations in the DNA repair genes RAD50 and CHEK2. We found that inhibition of the DNA repair enzyme MRE11 with the small molecule mirin inhibits androgen-dependent transcription and growth of prostate cancer cells. CONCLUSIONS: Our data supports the view that crosstalk between androgen signaling and DNA repair occurs at multiple levels, and that DNA repair enzymes in addition to PARPs, could be actionable targets in prostate cancer.
Nat Med. 2016 Apr;22(4):369-78
[PMID: 26928463 ]
Nucleic Acids Res. 2003 Jul 1;31(13):3812-4
[PMID: 12824425 ]
PLoS One. 2016 Aug 04;11(8):e0160519
[PMID: 27490490 ]
Mol Cell. 2013 Oct 10;52(1):25-36
[PMID: 24076218 ]
Front Oncol. 2017 May 19;7:98
[PMID: 28580318 ]
Nat Med. 2004 Jan;10(1):33-9
[PMID: 14702632 ]
Science. 2005 Apr 22;308(5721):551-4
[PMID: 15790808 ]
Cancer Res. 2015 Dec 1;75(23):5093-105
[PMID: 26573794 ]
Nat Methods. 2010 Apr;7(4):248-9
[PMID: 20354512 ]
Bioinformatics. 2015 Jan 15;31(2):166-9
[PMID: 25260700 ]
Cancer Res. 2004 Sep 1;64(17):6344-8
[PMID: 15342424 ]
Curr Opin Cell Biol. 2009 Apr;21(2):245-55
[PMID: 19230643 ]
Bioinformatics. 2009 Jul 15;25(14):1754-60
[PMID: 19451168 ]
Genes Dev. 2002 Sep 1;16(17):2237-51
[PMID: 12208847 ]
Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7376-81
[PMID: 10377422 ]
Nat Commun. 2017 Aug 29;8(1):374
[PMID: 28851861 ]
Cell. 2015 Jun 18;161(7):1592-605
[PMID: 26052046 ]
Nat Chem Biol. 2008 Feb;4(2):119-25
[PMID: 18176557 ]
Cancer Res. 2004 Dec 15;64(24):9152-9
[PMID: 15604286 ]
Nat Rev Cancer. 2015 Mar;15(3):166-80
[PMID: 25709118 ]
Sci Signal. 2017 May 23;10(480):
[PMID: 28536297 ]
Bioinformatics. 2010 Mar 1;26(5):589-95
[PMID: 20080505 ]
Methods Mol Biol. 2016;1415:245-62
[PMID: 27115637 ]
Cancer Res. 2017 Nov 1;77(21):e19-e22
[PMID: 29092931 ]
Cancer Cell. 2010 Jul 13;18(1):11-22
[PMID: 20579941 ]
J Urol. 2015 Feb;193(2):690-8
[PMID: 25132238 ]
Oncogene. 2015 Apr 2;34(14):1745-57
[PMID: 24837363 ]
Oncogene. 2005 Apr 18;24(17):2810-26
[PMID: 15838517 ]
Environ Toxicol Pharmacol. 2015 Jul;40(1):12-7
[PMID: 26056972 ]
Biochem Biophys Res Commun. 2007 Mar 2;354(1):122-6
[PMID: 17214964 ]
Mol Cancer. 2014 Sep 12;13:214
[PMID: 25216853 ]
CA Cancer J Clin. 2018 Jan;68(1):7-30
[PMID: 29313949 ]
N Engl J Med. 2009 Jul 9;361(2):123-34
[PMID: 19553641 ]
Cell. 2000 Jun 23;101(7):789-800
[PMID: 10892749 ]
EMBO J. 2011 May 20;30(13):2719-33
[PMID: 21602788 ]
BMC Bioinformatics. 2006 Jan 31;7:49
[PMID: 16448562 ]
Mol Endocrinol. 2010 Mar;24(3):511-25
[PMID: 20093418 ]
Ann Intern Med. 2011 Nov 15;155(10):JC5-07
[PMID: 22084354 ]
JAMA Oncol. 2016 Apr;2(4):471-80
[PMID: 26746117 ]
Cell Syst. 2015 Dec 23;1(6):417-425
[PMID: 26771021 ]
Cancer Discov. 2012 May;2(5):401-4
[PMID: 22588877 ]
Nat Genet. 2003 Jul;34(3):267-73
[PMID: 12808457 ]
Cancer Discov. 2013 Nov;3(11):1245-53
[PMID: 24027196 ]
J Stat Softw. 2012 Mar;46(11):
[PMID: 23050260 ]
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
[PMID: 16199517 ]
Cancer Cell. 2006 Oct;10(4):321-30
[PMID: 17010675 ]
Genome Biol. 2008;9(9):R137
[PMID: 18798982 ]
Nat Methods. 2012 Mar 04;9(4):357-9
[PMID: 22388286 ]
Nucleic Acids Res. 2017 Jan 4;45(D1):D777-D783
[PMID: 27899578 ]
N Engl J Med. 1997 Jul 31;337(5):295-300
[PMID: 9233866 ]
Mol Endocrinol. 2012 Sep;26(9):1531-41
[PMID: 22771493 ]
Genome Biol. 2005;6(8):R65
[PMID: 16086847 ]
Clin Sci (Lond). 2005 Apr;108(4):293-308
[PMID: 15603554 ]
Nat Genet. 2014 Mar;46(3):310-5
[PMID: 24487276 ]
EBioMedicine. 2016 Aug;10:85-100
[PMID: 27333051 ]
Genes Dev. 2010 Sep 15;24(18):1967-2000
[PMID: 20844012 ]
Nature. 2015 Oct 1;526(7571):68-74
[PMID: 26432245 ]
Mol Cancer Ther. 2016 Nov;15(11):2665-2678
[PMID: 27474153 ]
N Engl J Med. 2017 Aug 10;377(6):523-533
[PMID: 28578601 ]
Cancer Cell. 2015 Jul 13;28(1):97-113
[PMID: 26175416 ]
Cancer Discov. 2013 Nov;3(11):1254-71
[PMID: 24027197 ]
Carcinogenesis. 2011 Mar;32(3):279-85
[PMID: 21112959 ]
Cell. 2015 Nov 5;163(4):1011-25
[PMID: 26544944 ]
Oncogene. 2000 Feb 3;19(5):670-9
[PMID: 10698512 ]
Mol Cell. 2010 Oct 22;40(2):179-204
[PMID: 20965415 ]
BMC Bioinformatics. 2008 Dec 29;9:559
[PMID: 19114008 ]
Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7
[PMID: 27141961 ]
Cell. 2015 Jan 29;160(3):367-80
[PMID: 25619691 ]
Breast Cancer Res. 2002;4(3):R4
[PMID: 12052256 ]
Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33
[PMID: 25431634 ]
Sci Signal. 2013 Apr 02;6(269):pl1
[PMID: 23550210 ]
Cancer Discov. 2012 Dec;2(12):1134-49
[PMID: 22993403 ]
Science. 2012 Jul 6;337(6090):64-9
[PMID: 22604720 ]
Cancer Res. 2012 Jun 1;72(11):2814-21
[PMID: 22447567 ]
N Engl J Med. 2015 Oct 29;373(18):1697-708
[PMID: 26510020 ]
Science. 2006 Jun 23;312(5781):1798-802
[PMID: 16794079 ]
Psychoneuroendocrinology. 2007 Jun;32(5):470-9
[PMID: 17459596 ]
Bioinformatics. 2010 Mar 15;26(6):841-2
[PMID: 20110278 ]
J Med Genet. 2003 Dec;40(12):e131
[PMID: 14684699 ]
Mol Cell. 2014 Jan 9;53(1):7-18
[PMID: 24316220 ]
Cell. 2009 Dec 11;139(6):1069-83
[PMID: 19962179 ]
Nat Genet. 2015 Mar;47(3):276-83
[PMID: 25599402 ]
Nat Genet. 2010 Aug;42(8):668-75
[PMID: 20601956 ]
R01 CA214872/NCI NIH HHS
T32 CA009109/NCI NIH HHS
CA214872/National Cancer Institute
Androgens
Animals
DNA Repair
DNA, Neoplasm
Gene Expression Regulation, Neoplastic
Humans
Male
PC-3 Cells
Prostatic Neoplasms
Protein Kinase Inhibitors
Receptors, Androgen
Signal Transduction
Transcription, Genetic
Androgens
DNA, Neoplasm
Protein Kinase Inhibitors
Receptors, Androgen