Ilke Ugur, Martin Schatte, Antoine Marion, Manuel Glaser, Mara Boenitz-Dulat, Iris Antes
The allosteric activation of the intrinsically disordered enzyme Staphylococcus aureus sortase A is initiated via binding of a Ca2+ ion. Although Ca2+ binding was shown to initiate structural changes inducing disorder-to-order transitions, the details of the allosteric activation mechanism remain elusive. We performed long-term molecular dynamics simulations of sortase A without (3 simulations of 1.6 μs) and with bound Ca2+ (simulations of 1.6 μs, 1.8 μs, and 2.5 μs). Our results show that Ca2+ binding causes not only ordering of the disordered β6/β7 loop of the protein, but also modulates hinge motions in the dynamic β7/β8 loop, which is important for the catalytic activity of the enzyme. Cation binding triggers signal transmission from the Ca2+ binding site to the dynamic β7/β8 loop via the repetitive folding/unfolding of short helical stretches of the disordered β6/β7 loop. These correlated structural rearrangements lead to several distinct conformational states of the binding groove, which show optimal binding features for the sorting signal motif and feature binding energies up to 20 kcal/mol more favorable than observed for the sortase A without Ca2+. The presented results indicate a highly correlated, conformational selection-based activation mechanism of the enzyme triggered by cation binding. They also demonstrate the importance of the dynamics of intrinsically disordered regions for allosteric regulation.
J Biol Chem. 2004 Sep 3;279(36):37763-70
[PMID:
15247224]
J Chem Theory Comput. 2012 Aug 14;8(8):2725-2740
[PMID:
22904695]
J Comput Chem. 2003 Dec;24(16):1999-2012
[PMID:
14531054]
Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12424-9
[PMID:
10535938]
Biotechnol Bioeng. 2012 Dec;109(12):2955-61
[PMID:
22729808]
Infect Immun. 2001 Jan;69(1):75-80
[PMID:
11119491]
J Am Chem Soc. 2011 Nov 23;133(46):18518-21
[PMID:
22007755]
Biophys J. 2015 Oct 20;109(8):1706-15
[PMID:
26488662]
J Biol Chem. 2004 Jul 23;279(30):31383-9
[PMID:
15117963]
J Phys Chem B. 2011 Nov 10;115(44):13003-11
[PMID:
21950672]
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88
[PMID:
26592383]
Bioconjug Chem. 2013 Aug 21;24(8):1277-94
[PMID:
23837885]
J Biol Chem. 2008 May 23;283(21):14762-71
[PMID:
18375951]
J Chem Theory Comput. 2012 Apr 10;8(4):1409-1414
[PMID:
22754404]
J Biol Chem. 2014 Mar 28;289(13):8891-902
[PMID:
24519933]
J Biol Chem. 2009 Sep 4;284(36):24465-77
[PMID:
19592495]
Nat Protoc. 2013 Sep;8(9):1800-7
[PMID:
23989674]
Angew Chem Int Ed Engl. 2011 May 23;50(22):5024-32
[PMID:
21538739]
J Am Chem Soc. 2012 Apr 25;134(16):7094-101
[PMID:
22468560]
J Chem Theory Comput. 2016 Feb 9;12(2):714-27
[PMID:
26784558]
J Med Chem. 2015 Dec 10;58(23):9108-23
[PMID:
26280844]
Microbiol Mol Biol Rev. 1999 Mar;63(1):174-229
[PMID:
10066836]
J Chem Theory Comput. 2015 Nov 10;11(11):5513-24
[PMID:
26574339]
J Chem Theory Comput. 2012 May 8;8(5):1542-1555
[PMID:
22582031]
Protein Sci. 2017 Feb;26(2):174-185
[PMID:
27727496]
Biochemistry. 2007 Jun 19;46(24):7269-78
[PMID:
17518446]
PLoS One. 2011 Apr 06;6(4):e18342
[PMID:
21494692]
Proc Natl Acad Sci U S A. 2001 May 22;98(11):6056-61
[PMID:
11371637]
Microbiology. 2014 Apr;160(Pt 4):659-670
[PMID:
24464799]
Future Microbiol. 2009 Dec;4(10):1337-52
[PMID:
19995192]
Sci Rep. 2016 Feb 05;6:20413
[PMID:
26846342]
Proteins. 2016 Oct;84(10):1390-407
[PMID:
27287023]
Biophys J. 2008 Jul;95(1):L07-9
[PMID:
18456823]
J Chem Theory Comput. 2012 Sep 11;8(9):3314-21
[PMID:
26605738]
Pharmacol Rev. 2008 Mar;60(1):128-41
[PMID:
18321961]
Proteins. 2010 Apr;78(5):1084-104
[PMID:
20017216]
Microb Pathog. 2014 Dec;77:105-12
[PMID:
25457798]
Adv Microb Physiol. 2006;51:187-224
[PMID:
17010697]
J Med Chem. 2017 Oct 26;60(20):8268-8297
[PMID:
28594170]
FEBS Lett. 2004 Jul 30;571(1-3):221-6
[PMID:
15280046]
J Bacteriol. 2006 Feb;188(3):1071-80
[PMID:
16428411]
J Chem Theory Comput. 2011 Nov 8;7(11):3768-78
[PMID:
26598269]
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13343-8
[PMID:
25187567]
Bioconjug Chem. 2016 Jun 15;27(6):1484-92
[PMID:
27182715]
Biopolymers. 2010;94(4):385-96
[PMID:
20593474]
PLoS Comput Biol. 2016 Jun 10;12(6):e1004746
[PMID:
27285999]
J Bacteriol. 2009 Nov;191(21):6643-53
[PMID:
19717590]
FEBS J. 2015 Jun;282(11):2097-114
[PMID:
25845800]
Nat Protoc. 2013 Sep;8(9):1787-99
[PMID:
23989673]
Biochemistry. 2005 Aug 23;44(33):11188-200
[PMID:
16101303]
J Mol Biol. 2013 Feb 8;425(3):466-74
[PMID:
23207294]
Protein Sci. 2012 Dec;21(12):1858-71
[PMID:
23023444]
J Bacteriol. 2004 Sep;186(17):5865-75
[PMID:
15317792]
J Am Chem Soc. 2004 Mar 10;126(9):2670-1
[PMID:
14995162]
Front Chem. 2013 Dec 27;1:39
[PMID:
24790966]
J Mol Graph Model. 2016 Jun;67:33-43
[PMID:
27172839]
Chem Rev. 2016 Jun 8;116(11):6391-423
[PMID:
26889708]
J Chem Inf Model. 2011 Jan 24;51(1):69-82
[PMID:
21117705]
J Comput Aided Mol Des. 2011 Nov;25(11):1085-93
[PMID:
22101362]
Allosteric Regulation
Aminoacyltransferases
Bacterial Proteins
Binding Sites
Calcium
Calorimetry, Differential Scanning
Cysteine Endopeptidases
Ions
Molecular Dynamics Simulation
Protein Binding
Protein Structure, Tertiary
Recombinant Proteins
Staphylococcus aureus
Thermodynamics