The Molecular Signature of Megakaryocyte-Erythroid Progenitors Reveals a Role for the Cell Cycle in Fate Specification.

Yi-Chien Lu, Chad Sanada, Juliana Xavier-Ferrucio, Lin Wang, Ping-Xia Zhang, H Leighton Grimes, Meenakshi Venkatasubramanian, Kashish Chetal, Bruce Aronow, Nathan Salomonis, Diane S Krause
Author Information
  1. Yi-Chien Lu: Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA. Electronic address: yi-chien.lu@yale.edu.
  2. Chad Sanada: Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
  3. Juliana Xavier-Ferrucio: Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
  4. Lin Wang: Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
  5. Ping-Xia Zhang: Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
  6. H Leighton Grimes: Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA.
  7. Meenakshi Venkatasubramanian: Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
  8. Kashish Chetal: Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
  9. Bruce Aronow: Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
  10. Nathan Salomonis: Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
  11. Diane S Krause: Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.

Abstract

Megakaryocytic-erythroid progenitors (MEPs) give rise to the cells that produce red blood cells and platelets. Although the mechanisms underlying megakaryocytic (MK) and erythroid (E) maturation have been described, those controlling their specification from MEPs are unknown. Single-cell RNA sequencing of primary human MEPs, common myeloid progenitors (CMPs), megakaryocyte progenitors, and E progenitors revealed a distinct transitional MEP signature. Inferred regulatory transcription factors (TFs) were associated with differential expression of cell cycle regulators. Genetic manipulation of selected TFs validated their role in lineage specification and demonstrated coincident modulation of the cell cycle. Genetic and pharmacologic modulation demonstrated that cell cycle activation is sufficient to promote E versus MK specification. These findings, obtained from healthy human cells, lay a foundation to study the mechanisms underlying benign and malignant disease states of the megakaryocytic and E lineages.

References

  1. Nature. 2017 Mar 9;543(7644):205-210 [PMID: 28241143]
  2. Stem Cell Res. 2018 Jan;26:17-27 [PMID: 29212046]
  3. Blood. 2011 Jul 14;118(2):231-9 [PMID: 21622645]
  4. Cell. 2015 Dec 17;163(7):1663-77 [PMID: 26627738]
  5. Blood. 1996 Aug 15;88(4):1284-96 [PMID: 8695846]
  6. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):992-7 [PMID: 12552125]
  7. Nucleic Acids Res. 2010 Jan;38(Database issue):D792-9 [PMID: 19906719]
  8. Nature. 2010 Feb 4;463(7281):676-80 [PMID: 20130650]
  9. Stem Cells. 2016 Jun;34(6):1427-36 [PMID: 26889666]
  10. Development. 2016 Dec 1;143(23):4301-4311 [PMID: 27899507]
  11. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W755-62 [PMID: 20513647]
  12. Sci Adv. 2017 May 26;3(5):e1700298 [PMID: 28560351]
  13. Stem Cells. 2018 Aug;36(8):1138-1145 [PMID: 29658164]
  14. Blood. 2010 Apr 8;115(14):2784-95 [PMID: 20124515]
  15. Nature. 2016 Sep 29;537(7622):698-702 [PMID: 27580035]
  16. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  17. Nature. 2013 Oct 10;502(7470):232-6 [PMID: 23934107]
  18. Nat Methods. 2017 Mar;14(3):309-315 [PMID: 28114287]
  19. Blood. 2013 May 30;121(22):4463-72 [PMID: 23564910]
  20. Nat Cell Biol. 2017 Apr;19(4):271-281 [PMID: 28319093]
  21. Development. 2012 Nov;139(21):3905-16 [PMID: 23048181]
  22. Nature. 2000 Mar 9;404(6774):193-7 [PMID: 10724173]
  23. Dev Biol. 2018 Feb 1;434(1):36-47 [PMID: 29183737]
  24. Nat Cell Biol. 2017 Mar 31;19(4):261-263 [PMID: 28361939]
  25. J Exp Med. 2010 Dec 20;207(13):2817-30 [PMID: 21098095]
  26. Genes Cancer. 2010 Jun;1(6):605-16 [PMID: 21779460]
  27. Mol Cell Biol. 2003 May;23(10):3427-41 [PMID: 12724402]
  28. Cell Rep. 2013 Oct 31;5(2):471-81 [PMID: 24120864]
  29. Blood. 2016 Aug 18;128(7):923-33 [PMID: 27268089]
  30. Blood. 2009 Mar 5;113(10):2191-201 [PMID: 19011221]
  31. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  32. Science. 2011 May 6;332(6030):687-96 [PMID: 21551058]
  33. Cell. 2012 Mar 30;149(1):22-35 [PMID: 22464321]
  34. Cell. 2014 Feb 13;156(4):649-62 [PMID: 24486105]
  35. Blood. 2006 Jan 1;107(1):87-97 [PMID: 16144799]
  36. J Exp Med. 2015 Jul 27;212(8):1171-83 [PMID: 26150472]
  37. Science. 2016 Jan 8;351(6269):aab2116 [PMID: 26541609]
  38. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  39. Cell. 2013 Sep 26;155(1):135-47 [PMID: 24074866]
  40. Science. 2013 Aug 9;341(6146):670-3 [PMID: 23868921]
  41. Blood. 2009 Sep 3;114(10):2097-106 [PMID: 19372257]
  42. Science. 2014 Sep 26;345(6204):1251033 [PMID: 25258084]
  43. Blood. 2015 Jun 4;125(23):3570-9 [PMID: 25911237]
  44. Curr Stem Cell Rep. 2015;1(3):129-138 [PMID: 28725536]
  45. PLoS One. 2016 Jul 01;11(7):e0158369 [PMID: 27368054]
  46. Cell Syst. 2018 Feb 28;6(2):171-179.e5 [PMID: 29454938]
  47. Science. 1991 Mar 8;251(4998):1211-7 [PMID: 2006410]
  48. Blood. 2000 Apr 15;95(8):2559-68 [PMID: 10753835]
  49. Nat Commun. 2015 Apr 10;6:6750 [PMID: 25857523]
  50. Int J Hematol. 2016 May;103(5):510-8 [PMID: 26791377]

Grants

  1. U54 DK106857/NIDDK NIH HHS
  2. R01 DK094934/NIDDK NIH HHS
  3. R01 DK114031/NIDDK NIH HHS
  4. R01 DK086267/NIDDK NIH HHS
  5. T32 HL007974/NHLBI NIH HHS

MeSH Term

Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
Cell Cycle
Cell Lineage
Gene Expression Regulation
Gene Regulatory Networks
HEK293 Cells
High-Throughput Nucleotide Sequencing
Humans
Megakaryocyte-Erythroid Progenitor Cells
Proto-Oncogene Proteins c-myc
Reproducibility of Results
Signal Transduction
Transcription, Genetic
Tumor Suppressor Protein p53

Chemicals

Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
MAX protein, human
MYC protein, human
Proto-Oncogene Proteins c-myc
Tumor Suppressor Protein p53