BICD1 mediates HIF1α nuclear translocation in mesenchymal stem cells during hypoxia adaptation.

Hyun Jik Lee, Young Hyun Jung, Ji Young Oh, Gee Euhn Choi, Chang Woo Chae, Jun Sung Kim, Jae Ryong Lim, Seo Yihl Kim, Sei-Jung Lee, Je Kyung Seong, Ho Jae Han
Author Information
  1. Hyun Jik Lee: Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
  2. Young Hyun Jung: Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
  3. Ji Young Oh: Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea.
  4. Gee Euhn Choi: Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
  5. Chang Woo Chae: Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
  6. Jun Sung Kim: Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
  7. Jae Ryong Lim: Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
  8. Seo Yihl Kim: Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
  9. Sei-Jung Lee: Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, 38610, Republic of Korea.
  10. Je Kyung Seong: Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, and Korea Mouse Phetnotyping Center (KMPC), Seoul National University, Seoul, 08826, Republic of Korea.
  11. Ho Jae Han: Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea. hjhan@snu.ac.kr.

Abstract

Hypoxia inducible factor 1α (HIF1α) is a master regulator leading to metabolic adaptation, an essential physiological process to maintain the survival of stem cells under hypoxia. However, it is poorly understood how HIF1α translocates into the nucleus in stem cells under hypoxia. Here, we investigated the role of a motor adaptor protein Bicaudal D homolog 1 (BICD1) in dynein-mediated HIF1α nuclear translocation and the effect of BICD1 regulation on hypoxia adaptation and its therapeutic potential on human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). In our results, silencing of BICD1 but not BICD2 abolished HIF1α nuclear translocation and its activity. BICD1 overexpression further enhanced hypoxia-induced HIF1α nuclear translocation. Hypoxia stimulated direct bindings of HIF1α to BICD1 and the intermediate chain of dynein (Dynein IC), which was abolished by BICD1 silencing. Akt inhibition reduced the binding of BICD1 to HIF1α and nuclear translocation of HIF1α. Conversely, Akt activation or GSK3β silencing further enhanced the hypoxia-induced HIF1α nuclear translocation. Furthermore, BICD1 silencing abolished hypoxia-induced glycolytic reprogramming and increased mitochondrial ROS accumulation and apoptosis in UCB-MSCs under hypoxia. In the mouse skin wound healing model, the transplanted cell survival and skin wound healing capacities of hypoxia-pretreated UCB-MSCs were reduced by BICD1 silencing and further increased by GSK3β silencing. In conclusion, we demonstrated that BICD1-induced HIF1α nuclear translocation is critical for hypoxia adaptation, which determines the regenerative potential of UCB-MSCs.

References

Cell Signal. 2001 Jan;13(1):23-7 [PMID: 11257444]
EMBO J. 2001 Aug 1;20(15):4041-54 [PMID: 11483508]
J Biol Chem. 2002 Oct 18;277(42):40112-7 [PMID: 12186875]
Nat Cell Biol. 2002 Dec;4(12):986-92 [PMID: 12447383]
Trends Biochem Sci. 2003 Nov;28(11):612-8 [PMID: 14607092]
EMBO J. 2003 Nov 17;22(22):6004-15 [PMID: 14609947]
Cell Metab. 2006 Mar;3(3):177-85 [PMID: 16517405]
Am J Physiol Lung Cell Mol Physiol. 2006 Nov;291(5):L941-9 [PMID: 16766575]
EMBO J. 2006 Dec 13;25(24):5670-82 [PMID: 17139249]
Am J Physiol Lung Cell Mol Physiol. 2007 Oct;293(4):L913-22 [PMID: 17660326]
Cell Biol Int. 2008 Jan;32(1):8-15 [PMID: 17904875]
Biochim Biophys Acta. 2008 Mar;1783(3):394-404 [PMID: 18187047]
Mol Biol Cell. 2008 May;19(5):2300-10 [PMID: 18305100]
Immunology. 2009 Feb;126(2):220-32 [PMID: 18624725]
J Biol Chem. 2009 Feb 20;284(8):5332-42 [PMID: 19098000]
Cancer Microenviron. 2008 Dec;1(1):53-68 [PMID: 19308685]
Arterioscler Thromb Vasc Biol. 2009 Oct;29(10):1664-70 [PMID: 19644051]
Mol Biol Rep. 2010 Apr;37(4):2037-42 [PMID: 19649722]
Nat Rev Mol Cell Biol. 2009 Dec;10(12):854-65 [PMID: 19935668]
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1919-31 [PMID: 20228255]
PLoS Biol. 2010 Apr 06;8(4):e1000350 [PMID: 20386726]
Cardiovasc Res. 2010 Oct 1;88(1):196-204 [PMID: 20498255]
Development. 2011 Feb;138(3):507-18 [PMID: 21205795]
Cancer Res. 2011 Mar 15;71(6):2260-75 [PMID: 21278237]
J Cell Biol. 2011 Aug 22;194(4):597-612 [PMID: 21859863]
Front Mol Neurosci. 2011 Aug 09;4:15 [PMID: 21886605]
Traffic. 2012 Feb;13(2):218-33 [PMID: 21995724]
J Biol Chem. 2012 Apr 6;287(15):11859-69 [PMID: 22367210]
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20895-900 [PMID: 23213255]
Antioxid Redox Signal. 2014 Apr 20;20(12):1891-901 [PMID: 23621582]
Am J Hum Genet. 2013 Jun 6;92(6):965-73 [PMID: 23664120]
Genes Dev. 2013 Jun 1;27(11):1233-46 [PMID: 23723415]
Stem Cells. 2013 Sep;31(9):1902-9 [PMID: 23744828]
Diabetes. 2014 Jan;63(1):132-41 [PMID: 23974920]
Redox Biol. 2013 Aug 22;1:418-26 [PMID: 24191235]
Arterioscler Thromb Vasc Biol. 2014 Apr;34(4):870-6 [PMID: 24558105]
Nat Rev Mol Cell Biol. 2014 Apr;15(4):243-56 [PMID: 24651542]
EMBO J. 2014 Sep 1;33(17):1845-6 [PMID: 25061224]
Acta Crystallogr F Struct Biol Commun. 2014 Aug;70(Pt 8):1103-6 [PMID: 25084392]
Stem Cells. 2015 Mar;33(3):819-32 [PMID: 25376707]
Sci Rep. 2015 Mar 17;5:9193 [PMID: 25779090]
Biochem Biophys Res Commun. 2015 May 1;460(2):451-6 [PMID: 25796327]
Kaohsiung J Med Sci. 2015 Jun;31(6):279-86 [PMID: 26043406]
Cell Death Dis. 2015 Jul 30;6:e1835 [PMID: 26225774]
PLoS One. 2015 Sep 18;10(9):e0138477 [PMID: 26380983]
Mol Metab. 2015 Jul 15;4(9):631-42 [PMID: 26413469]
Front Biosci (Landmark Ed). 2016 Jan 01;21:385-96 [PMID: 26709780]
Oncogenesis. 2016 Jan 25;5:e190 [PMID: 26807645]
Exp Hematol. 2016 Sep;44(9):866-873.e4 [PMID: 27118043]
J Biochem. 2016 Aug;160(2):69-75 [PMID: 27289017]
Nat Commun. 2016 Aug 12;7:12471 [PMID: 27514992]
Exp Mol Med. 2016 Nov 4;48(11):e269 [PMID: 27811934]
Vitam Horm. 2017;104:133-152 [PMID: 28215293]
PLoS One. 2017 Apr 27;12(4):e0175449 [PMID: 28448518]
J Pineal Res. 2017 Sep;63(2):null [PMID: 28580603]
Stem Cells. 2017 Aug;35(8):1867-1880 [PMID: 28589621]
Int J Mol Sci. 2017 Jun 21;18(6):null [PMID: 28635661]
Cell Res. 2017 Sep;27(9):1083-1099 [PMID: 28675158]
Semin Cell Dev Biol. 2017 Aug;68:52-58 [PMID: 28676424]
Redox Biol. 2017 Oct;13:426-443 [PMID: 28704726]
Biochem Biophys Res Commun. 2017 Sep 9;491(1):228-235 [PMID: 28720497]
PeerJ. 2017 Aug 14;5:e3662 [PMID: 28828258]
PLoS One. 2017 Nov 8;12(11):e0187637 [PMID: 29117205]
Cell Metab. 2018 Feb 6;27(2):281-298 [PMID: 29129785]
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10707-E10716 [PMID: 29180435]
Cancer Sci. 2018 Mar;109(3):560-571 [PMID: 29285833]
J Exp Clin Cancer Res. 2018 Jan 19;37(1):9 [PMID: 29351758]
J Cell Biochem. 2018 Jun;119(6):4967-4974 [PMID: 29384225]
Neuroscience. 2018 Apr 1;375:25-33 [PMID: 29438800]
PLoS One. 2018 Feb 26;13(2):e0193477 [PMID: 29481555]

MeSH Term

Adaptation, Physiological
Adaptor Proteins, Signal Transducing
Animals
Cell Hypoxia
Cytoskeletal Proteins
Disease Models, Animal
Dyneins
Fetal Blood
Gene Expression Regulation, Developmental
Gene Silencing
Glycogen Synthase Kinase 3 beta
Humans
Hypoxia-Inducible Factor 1, alpha Subunit
Mesenchymal Stem Cells
Mice
Proto-Oncogene Proteins c-akt
Skin
Wound Healing

Chemicals

Adaptor Proteins, Signal Transducing
BICD1 protein, human
Cytoskeletal Proteins
HIF1A protein, human
Hypoxia-Inducible Factor 1, alpha Subunit
GSK3B protein, human
Glycogen Synthase Kinase 3 beta
Proto-Oncogene Proteins c-akt
Dyneins

Word Cloud

Similar Articles

Cited By