Deconstructing Retinal Organoids: Single Cell RNA-Seq Reveals the Cellular Components of Human Pluripotent Stem Cell-Derived Retina.

Joseph Collin, Rachel Queen, Darin Zerti, Birthe Dorgau, Rafiqul Hussain, Jonathan Coxhead, Simon Cockell, Majlinda Lako
Author Information
  1. Joseph Collin: Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
  2. Rachel Queen: Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, United Kingdom.
  3. Darin Zerti: Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
  4. Birthe Dorgau: Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
  5. Rafiqul Hussain: Genomics Core Facility, Newcastle University, Newcastle upon Tyne, United Kingdom.
  6. Jonathan Coxhead: Genomics Core Facility, Newcastle University, Newcastle upon Tyne, United Kingdom.
  7. Simon Cockell: Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, United Kingdom.
  8. Majlinda Lako: Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom. ORCID

Abstract

The rapid improvements in single cell sequencing technologies and analyses afford greater scope for dissecting organoid cultures composed of multiple cell types and create an opportunity to interrogate these models to understand tissue biology, cellular behavior and interactions. To this end, retinal organoids generated from human embryonic stem cells (hESCs) were analyzed by single cell RNA-sequencing (scRNA-Seq) at three time points of differentiation. Combinatorial data from all time points revealed the presence of nine clusters, five of which corresponded to key retinal cell types: retinal pigment epithelium (RPE), retinal ganglion cells (RGCs), cone and rod photoreceptors, and Müller glia. The remaining four clusters expressed genes typical of mitotic cells, extracellular matrix components and those involved in homeostasis. The cell clustering analysis revealed the decreasing presence of mitotic cells and RGCs, formation of a distinct RPE cluster, the emergence of cone and rod photoreceptors from photoreceptor precursors, and an increasing number of Müller glia cells over time. Pseudo-time analysis resembled the order of cell birth during retinal development, with the mitotic cluster commencing the trajectory and the large majority of Müller glia completing the time line. Together, these data demonstrate the feasibility and potential of scRNA-Seq to dissect the inherent complexity of retinal organoids and the orderly birth of key retinal cell types. Stem Cells 2019;37:593-598.

Keywords

References

  1. Invest Ophthalmol Vis Sci. 2004 Jul;45(7):2431-7 [PMID: 15223827]
  2. Vis Neurosci. 2014 Sep;31(4-5):317-32 [PMID: 24847731]
  3. Nat Methods. 2017 May;14(5):483-486 [PMID: 28346451]
  4. Gene. 2003 Oct 30;318:45-53 [PMID: 14585497]
  5. Anat Rec. 1985 Jun;212(2):199-205 [PMID: 3842042]
  6. Hum Mol Genet. 2014 Aug 1;23(15):4001-14 [PMID: 24634144]
  7. J Comp Neurol. 2004 Jun 21;474(2):304-24 [PMID: 15164429]
  8. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  9. Neuroscience. 2012 Dec 6;225:88-104 [PMID: 22982106]
  10. Br J Ophthalmol. 2012 May;96(5):614-8 [PMID: 22133988]
  11. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  12. Cell. 2007 Nov 30;131(5):861-72 [PMID: 18035408]
  13. Exp Eye Res. 2014 Jun;123:141-50 [PMID: 24060344]
  14. Dev Cell. 2015 Feb 23;32(4):478-90 [PMID: 25710534]
  15. Stem Cells. 2018 Mar;36(3):313-324 [PMID: 29230913]
  16. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  17. Cell Stem Cell. 2012 Jun 14;10(6):771-785 [PMID: 22704518]
  18. Eye (Lond). 2018 May;32(5):946-971 [PMID: 29503449]
  19. Science. 1998 Nov 6;282(5391):1145-7 [PMID: 9804556]
  20. J Comp Neurol. 2008 Jul 10;509(2):225-38 [PMID: 18465787]
  21. Neuron. 2001 Sep 27;31(6):929-41 [PMID: 11580894]
  22. Stem Cell Reports. 2018 Apr 10;10(4):1282-1293 [PMID: 29576537]
  23. Invest Ophthalmol Vis Sci. 2010 Aug;51(8):4028-34 [PMID: 20375327]
  24. Dev Biol. 2004 Jul 15;271(2):388-402 [PMID: 15223342]
  25. Nature. 2011 Apr 7;472(7341):51-6 [PMID: 21475194]
  26. Int J Dev Biol. 2015;59(1-3):63-71 [PMID: 26374527]
  27. Stem Cell Reports. 2017 Dec 12;9(6):1898-1915 [PMID: 29153988]

Grants

  1. MC_PC_15030/Medical Research Council
  2. MR/M008886/1/Medical Research Council
  3. MC_UU_00015/9/Medical Research Council
  4. BB/I02333X/1/BBSRC
  5. NC/C016106/1/National Centre for the Replacement, Refinement and Reduction of Animals in Research
  6. MC_UP_1501/2/Medical Research Council
  7. MR/M008886/1/MRC

MeSH Term

Cell Differentiation
Ependymoglial Cells
Extracellular Matrix
Human Embryonic Stem Cells
Humans
Organoids
Pluripotent Stem Cells
RNA-Seq
Retina
Retinal Cone Photoreceptor Cells
Retinal Ganglion Cells
Retinal Pigment Epithelium
Retinal Rod Photoreceptor Cells
Single-Cell Analysis

Word Cloud

Similar Articles

Cited By