OsDCL3b affects grain yield and quality in rice.

Peng-Fei Liao, Jie-Xiu Ouyang, Jian-Jun Zhang, Lan Yang, Xin Wang, Xiao-Jue Peng, Dong Wang, You-Lin Zhu, Shao-Bo Li
Author Information
  1. Peng-Fei Liao: Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
  2. Jie-Xiu Ouyang: Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
  3. Jian-Jun Zhang: College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
  4. Lan Yang: Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
  5. Xin Wang: Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
  6. Xiao-Jue Peng: Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
  7. Dong Wang: Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
  8. You-Lin Zhu: Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China. ylzhu1999@aliyun.com.
  9. Shao-Bo Li: Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China. lishaobo@ncu.edu.cn. ORCID

Abstract

KEY MESSAGE: We reported that knockdown of OsDCL3b decreased grain yield but increased grain quality in rice, which is helpful for molecular breeding in crops. Multiple DICER-LIKE (DCL) genes usually exist and show diverse biochemical and phenotypic functions in land plants. In rice, the biochemical function of OsDCL3b is known to process 24-nucleotide panicle phased small RNAs, however, its phenotypic functions are unclear. Here we reported that knockdown of OsDCL3b led to reduced pollen fertility, seed setting rate, and decreased grain yield but increased grain quality in rice. To reveal the molecular mechanism of the above phenomena, extracted RNAs from rice panicles of the wild type (WT) and OsDCL3b-RNAi line S6-1 were analyzed by deep sequencing. It showed that knockdown of OsDCL3b affected the biogenesis of both 21- and 24-nucleotide small RNAs including miRNAs and phased small RNAs. Using RNA-seq, 644 up- and 530 down-regulated mRNA genes were identified in panicles of line S6-1, and 550 and 273 differentially spliced genes with various alternative splicing (AS) events were observed in panicles of line S6-1 and WT, respectively, suggesting that OsDCL3b involved in influencing the transcript levels of mRNA genes and the AS events in rice panicles. Thus, our results show that knockdown of OsDCL3b will affect the biogenesis of small RNAs, which is involved in regulating the transcription of mRNA genes, and consequently influence the grain yield and quality in rice.

Keywords

References

  1. Curr Biol. 2002 Sep 3;12(17):1484-95 [PMID: 12225663]
  2. Trends Plant Sci. 2002 Nov;7(11):487-91 [PMID: 12417148]
  3. Science. 2003 Jul 18;301(5631):336-8 [PMID: 12869753]
  4. Cell. 2004 Jan 23;116(2):281-97 [PMID: 14744438]
  5. PLoS Biol. 2004 May;2(5):E104 [PMID: 15024409]
  6. Cell. 2004 Apr 2;117(1):69-81 [PMID: 15066283]
  7. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12753-8 [PMID: 15314213]
  8. Trends Biochem Sci. 2005 Feb;30(2):106-14 [PMID: 15691656]
  9. Curr Biol. 2005 Aug 23;15(16):1494-500 [PMID: 16040244]
  10. Plant Physiol. 2005 Sep;139(1):296-305 [PMID: 16126864]
  11. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12984-9 [PMID: 16129836]
  12. Plant Cell. 2005 Oct;17(10):2705-22 [PMID: 16141453]
  13. Nucleic Acids Res. 2005 Nov 27;33(20):e179 [PMID: 16314309]
  14. Cell Res. 2005 Nov-Dec;15(11-12):935-46 [PMID: 16354572]
  15. Cell. 2005 Dec 29;123(7):1279-91 [PMID: 16377568]
  16. FEBS Lett. 2006 May 1;580(10):2442-50 [PMID: 16638569]
  17. Nat Genet. 2006 Jun;38(6):721-5 [PMID: 16699516]
  18. EMBO J. 2006 Jul 26;25(14):3347-56 [PMID: 16810317]
  19. PLoS Biol. 2007 Mar;5(3):e57 [PMID: 17298187]
  20. Genetics. 2007 Jun;176(2):1359-62 [PMID: 17579240]
  21. Plant Cell. 2007 Sep;19(9):2705-18 [PMID: 17905898]
  22. Plant Physiol. 2007 Dec;145(4):1577-87 [PMID: 17951452]
  23. Trends Plant Sci. 2008 Jul;13(7):368-74 [PMID: 18501663]
  24. PLoS Comput Biol. 2008 Aug 08;4(8):e1000147 [PMID: 18688268]
  25. BMC Genomics. 2008 Oct 01;9:451 [PMID: 18826656]
  26. Plant Cell. 2008 Dec;20(12):3186-90 [PMID: 19074682]
  27. Cell. 2009 Feb 6;136(3):461-72 [PMID: 19203581]
  28. Genome Res. 2009 Aug;19(8):1429-40 [PMID: 19584097]
  29. Plant Cell Physiol. 2010 Jan;51(1):58-67 [PMID: 19933266]
  30. Plant Cell. 2010 Jan;22(1):173-90 [PMID: 20086189]
  31. Genes Dev. 2010 Apr 1;24(7):653-8 [PMID: 20299448]
  32. Mol Cell. 2010 May 14;38(3):465-75 [PMID: 20381393]
  33. Genes Dev. 2010 May 15;24(10):1010-21 [PMID: 20478994]
  34. Plant Physiol. 2010 Sep;154(1):149-62 [PMID: 20610705]
  35. Plant Cell. 2011 Jun;23(6):2225-46 [PMID: 21705642]
  36. Plant J. 2012 Feb;69(3):462-74 [PMID: 21973320]
  37. Brief Bioinform. 2013 Mar;14(2):178-92 [PMID: 22517427]
  38. Physiol Plant. 2013 Sep;149(1):13-24 [PMID: 23231646]
  39. Curr Opin Plant Biol. 2013 May;16(2):170-9 [PMID: 23466255]
  40. Nat Biotechnol. 2013 Sep;31(9):848-52 [PMID: 23873084]
  41. Plant Cell. 2013 Oct;25(10):3640-56 [PMID: 24179132]
  42. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3877-82 [PMID: 24554078]
  43. Plant J. 2015 Jan;81(2):223-32 [PMID: 25376953]
  44. Annu Rev Biochem. 2015;84:291-323 [PMID: 25784052]
  45. Plant J. 2015 Nov;84(3):527-44 [PMID: 26360816]
  46. Nat Commun. 2015 Sep 25;6:8139 [PMID: 26404089]
  47. Plant J. 2016 Aug;87(3):305-17 [PMID: 27133784]
  48. Nat Commun. 2016 Jun 24;7:11708 [PMID: 27339440]
  49. J Exp Bot. 2016 Nov;67(21):6037-6049 [PMID: 27702997]
  50. Plant J. 2017 Apr;90(1):133-146 [PMID: 28106309]
  51. Plant J. 2017 Jun;90(6):1064-1078 [PMID: 28267232]
  52. Nat Plants. 2017 Jun 30;3:17077 [PMID: 28665396]
  53. PLoS Genet. 2018 Feb 12;14(2):e1007238 [PMID: 29432414]

Grants

  1. 31260313/National Natural Science Foundation of China
  2. 31471426/National Natural Science Foundation of China
  3. 31560383/National Natural Science Foundation of China

MeSH Term

Crops, Agricultural
DNA Shuffling
Down-Regulation
Edible Grain
Fertility
Gene Expression Regulation, Plant
Gene Knockdown Techniques
Genes, Plant
High-Throughput Nucleotide Sequencing
MicroRNAs
Oryza
Phenotype
Plant Proteins
Quantitative Trait Loci
Seeds

Chemicals

MicroRNAs
Plant Proteins