CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones.

Joseph Collin, Darin Zerti, Rachel Queen, Tiago Santos-Ferreira, Roman Bauer, Jonathan Coxhead, Rafiqul Hussain, David Steel, Carla Mellough, Marius Ader, Evelyne Sernagor, Lyle Armstrong, Majlinda Lako
Author Information
  1. Joseph Collin: Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.
  2. Darin Zerti: Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.
  3. Rachel Queen: Genomics Core Facility, Newcastle University, Newcastle, United Kingdom.
  4. Tiago Santos-Ferreira: CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
  5. Roman Bauer: Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom.
  6. Jonathan Coxhead: Genomics Core Facility, Newcastle University, Newcastle, United Kingdom.
  7. Rafiqul Hussain: Genomics Core Facility, Newcastle University, Newcastle, United Kingdom.
  8. David Steel: Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.
  9. Carla Mellough: Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.
  10. Marius Ader: CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
  11. Evelyne Sernagor: Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom.
  12. Lyle Armstrong: Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.
  13. Majlinda Lako: Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom. ORCID

Abstract

Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.

Keywords

References

  1. Cell Stem Cell. 2016 Jun 2;18(6):769-81 [PMID: 27151457]
  2. Invest Ophthalmol Vis Sci. 1995 Feb;36(2):263-75 [PMID: 7843898]
  3. Stem Cells. 2015 Jan;33(1):79-90 [PMID: 25183393]
  4. Eye (Lond). 2018 May;32(5):946-971 [PMID: 29503449]
  5. J Lipid Res. 2016 Feb;57(2):258-64 [PMID: 26630912]
  6. Mol Ther. 2017 Mar 1;25(3):634-653 [PMID: 28143742]
  7. Hum Mol Genet. 2010 Dec 1;19(23):4545-59 [PMID: 20858907]
  8. Nature. 2017 May 4;545(7652):48-53 [PMID: 28445462]
  9. Nat Rev Immunol. 2018 Jan;18(1):35-45 [PMID: 28787399]
  10. Development. 2002 May;129(10):2435-46 [PMID: 11973275]
  11. Cell Rep. 2016 Nov 22;17(9):2460-2473 [PMID: 27880916]
  12. Nat Genet. 2004 Apr;36(4):351-60 [PMID: 14991054]
  13. Stem Cells. 2018 Mar;36(3):313-324 [PMID: 29230913]
  14. Cell Stem Cell. 2012 Jun 14;10(6):771-785 [PMID: 22704518]
  15. Cell. 1997 Nov 14;91(4):531-41 [PMID: 9390562]
  16. Nat Genet. 1999 Dec;23(4):466-70 [PMID: 10581037]
  17. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  18. Nat Commun. 2017 Aug 16;8(1):271 [PMID: 28814713]
  19. Vis Neurosci. 2014 Sep;31(4-5):317-32 [PMID: 24847731]
  20. Sci Rep. 2018 Feb 5;8(1):2370 [PMID: 29402929]
  21. Sci Rep. 2017 Apr 10;7(1):766 [PMID: 28396597]
  22. Nat Methods. 2017 May;14(5):483-486 [PMID: 28346451]
  23. Prog Retin Eye Res. 2003 Sep;22(5):607-55 [PMID: 12892644]
  24. Science. 2017 Apr 21;356(6335): [PMID: 28428369]
  25. Cell Res. 2017 Aug;27(8):967-988 [PMID: 28621329]
  26. Stem Cell Reports. 2018 Feb 13;10(2):406-421 [PMID: 29307580]
  27. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E81-90 [PMID: 26699487]
  28. Sci Rep. 2016 Mar 11;6:22867 [PMID: 26965927]
  29. Invest Ophthalmol Vis Sci. 2018 Feb 1;59(2):776-787 [PMID: 29392326]
  30. Dev Cell. 2013 Jul 15;26(1):59-72 [PMID: 23867227]
  31. Stem Cells. 2015 Aug;33(8):2416-30 [PMID: 25827910]
  32. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1101-6 [PMID: 23288902]
  33. J Lipid Res. 2010 Apr;51(4):685-700 [PMID: 19828910]
  34. PLoS One. 2012;7(5):e37926 [PMID: 22629470]
  35. Trends Mol Med. 2017 Jun;23(6):563-576 [PMID: 28501348]
  36. Science. 1974 Nov 1;186(4162):449-51 [PMID: 4369896]
  37. Stem Cells. 2016 Feb;34(2):311-21 [PMID: 26608863]
  38. Nature. 2006 Nov 9;444(7116):203-7 [PMID: 17093405]
  39. Nat Commun. 2015 Feb 19;6:6286 [PMID: 25695148]
  40. Nat Commun. 2016 Oct 04;7:13029 [PMID: 27701378]
  41. Curr Eye Res. 2011 Dec;36(12):1069-77 [PMID: 21978133]
  42. Development. 2019 Jan 29;146(2): [PMID: 30696714]
  43. Biochem J. 2017 Mar 20;474(7):1205-1220 [PMID: 28202712]
  44. Nat Commun. 2014 Jun 10;5:4047 [PMID: 24915161]
  45. Stem Cells. 2011 Aug;29(8):1206-18 [PMID: 21678528]
  46. Invest Ophthalmol Vis Sci. 2006 Jul;47(7):3017-27 [PMID: 16799048]
  47. Nature. 1990 Oct 18;347(6294):677-80 [PMID: 1977087]
  48. Neurosci Res. 2017 Oct;123:1-7 [PMID: 28433627]
  49. Stem Cells. 2018 May;36(5):709-722 [PMID: 29327488]
  50. Curr Biol. 2015 Aug 17;25(16):2111-22 [PMID: 26234216]
  51. Stem Cell Reports. 2017 Dec 12;9(6):1898-1915 [PMID: 29153988]
  52. Stem Cell Reports. 2014 Apr 24;2(5):662-74 [PMID: 24936453]
  53. J Lipid Res. 2015 Jan;56(1):81-97 [PMID: 25293590]
  54. Stem Cell Reports. 2017 Sep 12;9(3):820-837 [PMID: 28844659]
  55. Clin Transl Med. 2017 Dec;6(1):15 [PMID: 28405930]
  56. Development. 2017 Oct 15;144(20):3698-3705 [PMID: 28870990]
  57. Oncotarget. 2017 May 16;8(32):53763-53779 [PMID: 28881849]

Grants

  1. MR/N015037/1/Medical Research Council
  2. MC_PC_15030/MRC
  3. MC_UP_1501/2/Medical Research Council
  4. NC/C016106/1/National Centre for the Replacement, Refinement and Reduction of Animals in Research
  5. MR/M008886/1/MRC
  6. MC_PC_15030/Medical Research Council
  7. #BB/I02333X/1/BBSRC
  8. MR/M008886/1/Medical Research Council
  9. MC_UU_00015/9/Medical Research Council
  10. MR/R011338/1/Medical Research Council

MeSH Term

Animals
Cell Differentiation
Cell Lineage
Humans
Induced Pluripotent Stem Cells
Mice
Organoids
Pluripotent Stem Cells
Retina
Retinal Cone Photoreceptor Cells
Retinal Degeneration
Retinal Rod Photoreceptor Cells
Transcriptome