Rice Genomics: over the Past Two Decades and into the Future.

Shuhui Song, Dongmei Tian, Zhang Zhang, Songnian Hu, Jun Yu
Author Information
  1. Shuhui Song: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: songshh@big.ac.cn.
  2. Dongmei Tian: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
  3. Zhang Zhang: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  4. Songnian Hu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  5. Jun Yu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: junyu@big.ac.cn.

Abstract

Domestic rice (Oryza sativa L.) is one of the most important cereal crops, feeding a large number of worldwide populations. Along with various high-throughput genome sequencing projects, rice genomics has been making great headway toward direct field applications of basic research advances in understanding the molecular mechanisms of agronomical traits and utilizing diverse germplasm resources. Here, we briefly review its achievements over the past two decades and present the potential for its bright future.

Keywords

References

  1. Nat Genet. 2014 Sep;46(9):982-8 [PMID: 25064006]
  2. Nucleic Acids Res. 2017 Jan 4;45(D1):D1075-D1081 [PMID: 27899667]
  3. Curr Opin Genet Dev. 2018 Apr;49:115-123 [PMID: 29715568]
  4. Nat Genet. 2014 Jul;46(7):714-21 [PMID: 24908251]
  5. Plant J. 2015 Jan;81(1):13-23 [PMID: 25267402]
  6. Mol Plant. 2015 Jun;8(6):946-57 [PMID: 25747843]
  7. Nat Commun. 2013;4:1595 [PMID: 23481403]
  8. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15847-52 [PMID: 23019369]
  9. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5163-71 [PMID: 27535938]
  10. Ann Bot. 2007 Nov;100(5):959-66 [PMID: 17704538]
  11. Commun Biol. 2018 Jun 29;1:84 [PMID: 30271965]
  12. Plant Cell Physiol. 2014 Jan;55(1):e9 [PMID: 24334415]
  13. Nat Plants. 2015 Mar 03;1:15020 [PMID: 27246887]
  14. Plant Cell. 2000 Nov;12(11):2011-7 [PMID: 11090205]
  15. BMC Plant Biol. 2007 Sep 19;7:49 [PMID: 17877838]
  16. Database (Oxford). 2016 Aug 10;2016: [PMID: 27515824]
  17. Plant Biotechnol J. 2017 Jun;15(6):765-774 [PMID: 27889940]
  18. Mol Plant. 2016 Jul 6;9(7):1078-81 [PMID: 27018389]
  19. Curr Opin Plant Biol. 2013 May;16(2):221-7 [PMID: 23587937]
  20. Nucleic Acids Res. 2001 Jan 1;29(1):308-11 [PMID: 11125122]
  21. Sci China Life Sci. 2013 Oct;56(10):968-74 [PMID: 24022126]
  22. Nat Commun. 2017 Mar 20;8:14789 [PMID: 28317902]
  23. Science. 2002 Apr 5;296(5565):92-100 [PMID: 11935018]
  24. Nature. 2018 May;557(7703):43-49 [PMID: 29695866]
  25. Crit Rev Food Sci Nutr. 2015;55(1):41-9 [PMID: 24915404]
  26. Nat Commun. 2013;4:2274 [PMID: 23917264]
  27. Nat Genet. 2010 Nov;42(11):961-7 [PMID: 20972439]
  28. Nat Commun. 2017 May 04;8:15324 [PMID: 28469237]
  29. Nucleic Acids Res. 2015 Jan;43(Database issue):D1018-22 [PMID: 25274737]
  30. Nucleic Acids Res. 2018 Jan 4;46(D1):D1181-D1189 [PMID: 29165610]
  31. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14492-7 [PMID: 23940322]
  32. Gigascience. 2014 May 28;3:7 [PMID: 24872877]
  33. Genome Res. 2002 Jun;12(6):851-6 [PMID: 12045139]
  34. Philos Trans R Soc Lond B Biol Sci. 2007 Jun 29;362(1482):1023-34 [PMID: 17331896]
  35. Sci Data. 2016 Sep 13;3:160076 [PMID: 27622467]
  36. Plant Cell Physiol. 2013 Feb;54(2):e6 [PMID: 23299411]
  37. Methods Mol Biol. 2013;956:95-107 [PMID: 23135847]
  38. Nucleic Acids Res. 2016 Jan 4;44(D1):D1172-80 [PMID: 26519466]
  39. Front Plant Sci. 2017 Oct 13;8:1773 [PMID: 29081789]
  40. Cell Res. 2008 Dec;18(12):1199-209 [PMID: 19015668]
  41. Nucleic Acids Res. 2019 Jan 8;47(D1):D8-D14 [PMID: 30365034]
  42. Genome Biol. 2014;15(11):506 [PMID: 25468217]
  43. Mol Plant. 2018 Mar 5;11(3):359-380 [PMID: 29409893]
  44. Nat Biotechnol. 2011 Dec 11;30(1):105-11 [PMID: 22158310]
  45. BMC Plant Biol. 2008 Nov 11;8:114 [PMID: 19000321]
  46. Nucleic Acids Res. 2015 Jan;43(Database issue):D1023-7 [PMID: 25429973]
  47. Nature. 2016 Sep 29;537(7622):629-633 [PMID: 27602511]
  48. Rice (N Y). 2013 Feb 06;6(1):4 [PMID: 24280374]
  49. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4954-62 [PMID: 25368197]
  50. Nat Genet. 2008 Aug;40(8):1023-8 [PMID: 18604208]
  51. Science. 2002 Apr 5;296(5565):79-92 [PMID: 11935017]
  52. Curr Opin Plant Biol. 2000 Apr;3(2):138-41 [PMID: 10712951]
  53. Nat Genet. 2018 Feb;50(2):285-296 [PMID: 29358651]
  54. Nature. 2012 Oct 25;490(7421):497-501 [PMID: 23034647]
  55. Plant Cell. 2013 Oct;25(10):3743-59 [PMID: 24170127]
  56. Genome Biol. 2018 Nov 30;19(1):210 [PMID: 30501614]
  57. Nat Commun. 2015 Feb 05;6:6258 [PMID: 25651972]
  58. Sci Rep. 2015 Jun 11;5:11303 [PMID: 26068787]
  59. Nucleic Acids Res. 2008 Jan;36(Database issue):D1028-33 [PMID: 18089549]
  60. Science. 1995 Dec 15;270(5243):1804-6 [PMID: 8525370]
  61. Plant Cell. 2018 Nov;30(11):2720-2740 [PMID: 30373760]
  62. Mol Plant. 2016 Jul 6;9(7):975-85 [PMID: 27179918]
  63. Nat Genet. 2010 Jun;42(6):545-9 [PMID: 20495564]
  64. Sci Rep. 2017 Aug 9;7(1):7635 [PMID: 28794433]
  65. Mol Plant. 2017 Sep 12;10(9):1238-1241 [PMID: 28645639]
  66. Nat Genet. 2010 Jun;42(6):541-4 [PMID: 20495565]
  67. F1000Res. 2017 Aug 31;6:1623 [PMID: 28928963]
  68. BMC Genet. 2016 Jan 25;17:28 [PMID: 26810156]
  69. Nucleic Acids Res. 2018 Jan 4;46(D1):D802-D808 [PMID: 29092050]
  70. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7695-701 [PMID: 19372371]
  71. PLoS Genet. 2011 Jun;7(6):e1002100 [PMID: 21695282]
  72. Mol Plant. 2017 Oct 9;10(10):1353-1356 [PMID: 28803900]
  73. Mol Plant. 2017 Sep 12;10(9):1242-1245 [PMID: 28645638]
  74. Int J Mol Sci. 2013 Nov 14;14(11):22499-528 [PMID: 24240810]
  75. Theor Appl Genet. 2011 Jan;122(1):49-61 [PMID: 20717799]
  76. Gigascience. 2014 May 28;3:8 [PMID: 24872878]
  77. Nat Genet. 2011 Dec 04;44(1):32-9 [PMID: 22138690]
  78. Genomics Proteomics Bioinformatics. 2010 Dec;8(4):211-28 [PMID: 21382590]
  79. Nat Genet. 2016 Apr;48(4):447-56 [PMID: 26950093]
  80. PLoS Biol. 2005 Feb;3(2):e38 [PMID: 15685292]
  81. Nucleic Acids Res. 2013 Jan;41(Database issue):D1199-205 [PMID: 23193278]
  82. Nucleic Acids Res. 2018 Jan 4;46(D1):D944-D949 [PMID: 29069473]
  83. J Evol Biol. 2009 Apr;22(4):751-61 [PMID: 19243488]
  84. Nature. 2005 Aug 11;436(7052):793-800 [PMID: 16100779]

MeSH Term

Crops, Agricultural
Genome, Plant
Genomics
High-Throughput Nucleotide Sequencing
Oryza
Phenotype

Word Cloud

Similar Articles

Cited By