Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development.

Maz��ne Hochane, Patrick R van den Berg, Xueying Fan, No��mie B��renger-Currias, Esm��e Adegeest, Monika Bialecka, Maaike Nieveen, Maarten Menschaart, Susana M Chuva de Sousa Lopes, Stefan Semrau
Author Information
  1. Maz��ne Hochane: Leiden Institute of Physics, Leiden University, Leiden, The Netherlands.
  2. Patrick R van den Berg: Leiden Institute of Physics, Leiden University, Leiden, The Netherlands. ORCID
  3. Xueying Fan: Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
  4. No��mie B��renger-Currias: Leiden Institute of Physics, Leiden University, Leiden, The Netherlands. ORCID
  5. Esm��e Adegeest: Leiden Institute of Physics, Leiden University, Leiden, The Netherlands. ORCID
  6. Monika Bialecka: Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
  7. Maaike Nieveen: Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
  8. Maarten Menschaart: Leiden Institute of Physics, Leiden University, Leiden, The Netherlands. ORCID
  9. Susana M Chuva de Sousa Lopes: Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands. ORCID
  10. Stefan Semrau: Leiden Institute of Physics, Leiden University, Leiden, The Netherlands. ORCID

Abstract

The current understanding of mammalian kidney development is largely based on mouse models. Recent landmark studies revealed pervasive differences in renal embryogenesis between mouse and human. The scarcity of detailed gene expression data in humans therefore hampers a thorough understanding of human kidney development and the possible developmental origin of kidney diseases. In this paper, we present a single-cell transcriptomics study of the human fetal kidney. We identified 22 cell types and a host of marker genes. Comparison of samples from different developmental ages revealed continuous gene expression changes in podocytes. To demonstrate the usefulness of our data set, we explored the heterogeneity of the nephrogenic niche, localized podocyte precursors, and confirmed disease-associated marker genes. With close to 18,000 renal cells from five different developmental ages, this study provides a rich resource for the elucidation of human kidney development, easily accessible through an interactive web application.

References

  1. Am J Physiol Cell Physiol. 2014 Oct 15;307(8):C745-59 [PMID: 25163516]
  2. Kidney Int. 2017 Oct;92(4):836-849 [PMID: 28476557]
  3. J Invest Dermatol. 2017 Sep;137(9):1868-1877 [PMID: 28526300]
  4. Annu Rev Physiol. 2016;78:437-61 [PMID: 26863327]
  5. Development. 2007 Jul;134(13):2501-9 [PMID: 17537792]
  6. Sci Rep. 2015 Oct 29;5:15676 [PMID: 26511275]
  7. Nat Commun. 2016 Jan 21;7:10023 [PMID: 26831199]
  8. Development. 2015 Dec 15;142(24):4340-50 [PMID: 26525672]
  9. Cell Rep. 2014 Jan 16;6(1):18-23 [PMID: 24373969]
  10. Nat Protoc. 2009;4(8):1184-91 [PMID: 19617889]
  11. Sci Rep. 2017 Apr 28;7:45040 [PMID: 28452372]
  12. J Occup Health. 2014;56(1):28-38 [PMID: 24351856]
  13. Curr Top Dev Biol. 2016;117:31-64 [PMID: 26969971]
  14. Am J Physiol. 1996 Sep;271(3 Pt 2):F744-53 [PMID: 8853438]
  15. Am J Hum Genet. 2016 Sep 1;99(3):636-646 [PMID: 27588450]
  16. J Am Soc Nephrol. 2018 Mar;29(3):806-824 [PMID: 29449449]
  17. Stem Cell Reports. 2014 Oct 14;3(4):650-62 [PMID: 25358792]
  18. Kidney Int. 2000 Oct;58(4):1557-68 [PMID: 11012890]
  19. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  20. Dev Biol. 2002 Sep 1;249(1):16-29 [PMID: 12217315]
  21. Stem Cell Res Ther. 2013;4(5):103 [PMID: 24004644]
  22. Dev Dyn. 2007 Aug;236(8):2321-30 [PMID: 17615577]
  23. Cold Spring Harb Perspect Biol. 2012 May 01;4(5): [PMID: 22550230]
  24. J Biochem. 1995 Apr;117(4):845-9 [PMID: 7592548]
  25. Int J Mol Med. 2015 Jul;36(1):294-300 [PMID: 25902289]
  26. Development. 2017 Oct 1;144(19):3625-3632 [PMID: 28851704]
  27. Development. 2010 Jan;137(2):283-92 [PMID: 20040494]
  28. Kidney Int. 2018 Mar;93(3):589-598 [PMID: 29217079]
  29. Histochem Cell Biol. 2017 Jun;147(6):721-731 [PMID: 28091742]
  30. Kidney Int. 2018 May;93(5):1142-1153 [PMID: 29459093]
  31. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  32. Dev Dyn. 2018 Jan;247(1):229-238 [PMID: 28771884]
  33. Cell Rep. 2014 Sep 11;8(5):1447-60 [PMID: 25176654]
  34. PLoS One. 2011;6(9):e24640 [PMID: 21931791]
  35. Exp Cell Res. 2017 Mar 15;352(2):265-272 [PMID: 28223138]
  36. Dev Biol. 2001 Dec 15;240(2):340-60 [PMID: 11784068]
  37. Pharmacol Ther. 2017 May;173:19-33 [PMID: 28132904]
  38. Dev Cell. 2018 Jun 4;45(5):651-660.e4 [PMID: 29870722]
  39. J Am Soc Nephrol. 2018 Mar;29(3):785-805 [PMID: 29449453]
  40. Wiley Interdiscip Rev Dev Biol. 2012 Sep-Oct;1(5):693-713 [PMID: 22942910]
  41. Mol Cell Neurosci. 2010 Dec;45(4):398-407 [PMID: 20692344]
  42. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  43. Pflugers Arch. 2017 Aug;469(7-8):1007-1015 [PMID: 28508947]
  44. J Am Soc Nephrol. 2002 Mar;13(3):668-76 [PMID: 11856770]
  45. Dev Cell. 2010 May 18;18(5):698-712 [PMID: 20493806]
  46. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  47. Development. 2018 Aug 30;145(16): [PMID: 30166318]
  48. Nat Commun. 2018 May 14;9(1):1873 [PMID: 29760424]
  49. Dev Biol. 2009 Sep 15;333(2):312-23 [PMID: 19591821]
  50. Dev Biol. 2008 Dec 1;324(1):88-98 [PMID: 18835385]
  51. Methods. 2015 Sep 1;85:54-61 [PMID: 26142758]
  52. Nat Methods. 2017 Sep 29;14(10):935-936 [PMID: 28960196]
  53. Pflugers Arch. 2017 Aug;469(7-8):959-963 [PMID: 28643148]
  54. Genome Biol. 2016 Apr 27;17:75 [PMID: 27122128]
  55. J Biol Chem. 2009 Jul 3;284(27):18270-81 [PMID: 19416972]
  56. Nat Genet. 2012 Jul 15;44(8):904-9 [PMID: 22797727]
  57. Pediatr Nephrol. 2014 Apr;29(4):575-80 [PMID: 24022365]
  58. Dev Biol. 2016 Oct 15;418(2):297-306 [PMID: 27346698]
  59. Mol Biol Cell. 2008 Jun;19(6):2588-96 [PMID: 18400942]
  60. Nat Rev Cancer. 2006 Feb;6(2):99-106 [PMID: 16491069]
  61. Cell Rep. 2018 Sep 25;24(13):3554-3567.e3 [PMID: 30257215]
  62. Am J Physiol Regul Integr Comp Physiol. 2015 Jan 15;308(2):R138-49 [PMID: 25427768]
  63. Mech Dev. 2004 Jun;121(6):547-57 [PMID: 15172686]
  64. Kidney Int. 2018 Jan;93(1):95-109 [PMID: 28750927]
  65. J Am Soc Nephrol. 2018 Mar;29(3):825-840 [PMID: 29449451]
  66. Development. 2014 Aug;141(15):3093-101 [PMID: 25053437]
  67. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  68. BMC Dev Biol. 2015 Jan 21;15:4 [PMID: 25605128]
  69. Stem Cell Reports. 2015 Jun 9;4(6):1112-24 [PMID: 26028532]
  70. Nephrol Dial Transplant. 2002;17 Suppl 9:52-4 [PMID: 12386288]

MeSH Term

Cell Differentiation
Cell Lineage
Datasets as Topic
Female
Fetal Development
Fetus
Gene Expression Profiling
Gene Expression Regulation, Developmental
Gene Ontology
Gestational Age
Humans
Kidney
Male
Molecular Sequence Annotation
Organogenesis
Podocytes
Single-Cell Analysis
Transcriptome

Word Cloud

Similar Articles

Cited By