BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma.

Katharine Herbert, Romuald Binet, Jean-Philippe Lambert, Pakavarin Louphrasitthiphol, Halime Kalkavan, Laura Sesma-Sanz, Carla Daniela Robles-Espinoza, Sovan Sarkar, Eda Suer, Sarah Andrews, Jagat Chauhan, Nicola D Roberts, Mark R Middleton, Anne-Claude Gingras, Jean-Yves Masson, Lionel Larue, Paola Falletta, Colin R Goding
Author Information
  1. Katharine Herbert: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
  2. Romuald Binet: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
  3. Jean-Philippe Lambert: Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
  4. Pakavarin Louphrasitthiphol: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
  5. Halime Kalkavan: Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
  6. Laura Sesma-Sanz: Genome Stability Laboratory, CHU de Oncology Division, Québec Research Center, Québec City, Quebec G1R 3S3, Canada.
  7. Carla Daniela Robles-Espinoza: Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro 76230, Mexico.
  8. Sovan Sarkar: Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
  9. Eda Suer: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
  10. Sarah Andrews: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
  11. Jagat Chauhan: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
  12. Nicola D Roberts: The Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom.
  13. Mark R Middleton: Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
  14. Anne-Claude Gingras: Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
  15. Jean-Yves Masson: Genome Stability Laboratory, CHU de Oncology Division, Québec Research Center, Québec City, Quebec G1R 3S3, Canada.
  16. Lionel Larue: Institut Curie, PSL Research University, Normal and Pathological Development of Melanocytes, U1021, Institut National de la Santé et de la Recherche Médicale (INSERM), 91405 Orsay, France.
  17. Paola Falletta: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
  18. Colin R Goding: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.

Abstract

Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation. Here we found, surprisingly, that rather than interacting with transcription cofactors, BRN2 is instead associated with DNA damage response proteins and directly binds PARP1 and Ku70/Ku80. Rapid PARP1-dependent BRN2 association with sites of DNA damage facilitates recruitment of Ku80 and reprograms DNA damage repair by promoting Ku-dependent nonhomologous end-joining (NHEJ) at the expense of homologous recombination. BRN2 also suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy- and vemurafenib-induced apoptosis. Remarkably, BRN2 expression also correlates with a high single-nucleotide variation prevalence in human melanomas. By promoting error-prone DNA damage repair via NHEJ and suppressing apoptosis of damaged cells, our results suggest that BRN2 contributes to the generation of melanomas with a high mutation burden. Our findings highlight a novel role for a key transcription factor in reprogramming DNA damage repair and suggest that BRN2 may impact the response to DNA-damaging agents in BRN2-expressing cancers.

Keywords

References

  1. J Biol Chem. 1999 May 21;274(21):15237-44 [PMID: 10329733]
  2. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  3. J Mol Biol. 2000 Sep 8;302(1):205-17 [PMID: 10964570]
  4. Eur J Biochem. 2000 Nov;267(21):6413-22 [PMID: 11029584]
  5. Endocr Rev. 2001 Feb;22(1):2-35 [PMID: 11159814]
  6. J Mol Biol. 2000 Oct 6;302(5):1023-39 [PMID: 11183772]
  7. Oncogene. 2001 Nov 1;20(50):7375-85 [PMID: 11704867]
  8. Int J Cancer. 2002 Apr 20;98(6):811-6 [PMID: 11948456]
  9. Cell. 2002 Jun 14;109(6):707-18 [PMID: 12086670]
  10. Genes Dev. 2002 Jul 15;16(14):1760-5 [PMID: 12130536]
  11. Nat Rev Mol Cell Biol. 2003 Sep;4(9):712-20 [PMID: 14506474]
  12. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  13. Bioinformatics. 2004 Jun 12;20(9):1453-4 [PMID: 14871861]
  14. Mol Cell Biol. 2004 Apr;24(7):2915-22 [PMID: 15024079]
  15. Mol Cell Biol. 2004 Apr;24(7):2923-31 [PMID: 15024080]
  16. Bioinformatics. 2004 Nov 22;20(17):3246-8 [PMID: 15180930]
  17. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  18. Cancer Res. 2004 Oct 1;64(19):7002-10 [PMID: 15466193]
  19. Cell Cycle. 2005 Feb;4(2):339-45 [PMID: 15655354]
  20. Mol Cell. 2005 May 27;18(5):577-87 [PMID: 15916964]
  21. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  22. Methods Mol Biol. 2006;314:73-80 [PMID: 16673875]
  23. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9891-6 [PMID: 16788066]
  24. Methods Enzymol. 2006;409:493-510 [PMID: 16793420]
  25. Cell. 2006 Aug 25;126(4):663-76 [PMID: 16904174]
  26. Genes Dev. 2006 Dec 15;20(24):3426-39 [PMID: 17182868]
  27. Bioinformatics. 2008 Nov 1;24(21):2534-6 [PMID: 18606607]
  28. PLoS One. 2008 Jul 16;3(7):e2734 [PMID: 18628967]
  29. Melanoma Res. 2008 Oct;18(5):336-45 [PMID: 18781132]
  30. Cancer Res. 2008 Oct 1;68(19):7788-94 [PMID: 18829533]
  31. Pigment Cell Melanoma Res. 2008 Dec;21(6):611-26 [PMID: 18983536]
  32. Cancer Res. 2009 Oct 15;69(20):7969-77 [PMID: 19826052]
  33. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  34. Proteomics. 2010 Mar;10(6):1150-9 [PMID: 20101611]
  35. Pigment Cell Melanoma Res. 2010 Jun;23(3):404-18 [PMID: 20337985]
  36. Pigment Cell Melanoma Res. 2010 Dec;23(6):746-59 [PMID: 20726948]
  37. Cancer Cell. 2011 Jan 18;19(1):45-57 [PMID: 21215707]
  38. Oncogene. 2011 May 19;30(20):2319-32 [PMID: 21258399]
  39. Oncogene. 2011 Jul 7;30(27):3036-48 [PMID: 21358674]
  40. Pigment Cell Melanoma Res. 2011 Jun;24(3):525-37 [PMID: 21435193]
  41. Pigment Cell Melanoma Res. 2011 Aug;24(4):725-7 [PMID: 21501420]
  42. Cell Cycle. 2011 Apr 15;10(8):1287-94 [PMID: 21512314]
  43. Nature. 2011 May 19;473(7347):337-42 [PMID: 21593866]
  44. Cell Stem Cell. 2011 Aug 5;9(2):113-8 [PMID: 21802386]
  45. Methods Mol Biol. 2011;780:209-26 [PMID: 21870263]
  46. Mol Cell Proteomics. 2011 Dec;10(12):M111.007690 [PMID: 21876204]
  47. Nat Cell Biol. 2011 Oct 03;13(10):1161-9 [PMID: 21968989]
  48. Nucleic Acids Res. 1990 Sep 25;18(18):5495-503 [PMID: 2216722]
  49. Cancer J. 2012 Mar-Apr;18(2):142-7 [PMID: 22453015]
  50. Cell. 2012 Jul 20;150(2):251-63 [PMID: 22817889]
  51. Nat Genet. 2012 Sep;44(9):1006-14 [PMID: 22842228]
  52. Mol Cell Biol. 2012 Nov;32(22):4674-83 [PMID: 22988297]
  53. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  54. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  55. PLoS Genet. 2013;9(2):e1003288 [PMID: 23437007]
  56. Pathol Int. 2013 Mar;63(3):158-68 [PMID: 23530560]
  57. Methods Enzymol. 2013;528:27-48 [PMID: 23849857]
  58. Nat Protoc. 2013 Aug;8(8):1551-66 [PMID: 23868073]
  59. Nature. 2013 Aug 22;500(7463):415-21 [PMID: 23945592]
  60. Nat Methods. 2013 Dec;10(12):1239-45 [PMID: 24162924]
  61. Cell. 2013 Oct 24;155(3):621-35 [PMID: 24243019]
  62. Eur J Cell Biol. 2014 Jan-Feb;93(1-2):55-60 [PMID: 24315688]
  63. J Proteomics. 2014 Apr 4;100:55-9 [PMID: 24412199]
  64. J Proteomics. 2014 Apr 4;100:37-43 [PMID: 24513533]
  65. J Proteomics. 2015 Apr 6;118:81-94 [PMID: 25281560]
  66. N Engl J Med. 2014 Dec 4;371(23):2189-2199 [PMID: 25409260]
  67. Nat Commun. 2015 Apr 09;6:6683 [PMID: 25865119]
  68. Cell Rep. 2015 Jun 9;11(9):1486-500 [PMID: 26004182]
  69. EMBO Rep. 2015 Sep;16(9):1177-91 [PMID: 26265007]
  70. Science. 2015 Oct 9;350(6257):207-211 [PMID: 26359337]
  71. N Engl J Med. 2015 Nov 12;373(20):1926-36 [PMID: 26559571]
  72. J Biol Chem. 2016 Jan 22;291(4):1789-802 [PMID: 26559976]
  73. Cell Rep. 2015 Nov 3;13(5):898-905 [PMID: 26565903]
  74. Nat Neurosci. 2016 Jun;19(6):807-15 [PMID: 27110916]
  75. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  76. Nat Rev Cancer. 2016 Jun;16(6):345-58 [PMID: 27125352]
  77. J Proteomics. 2016 Oct 21;149:64-68 [PMID: 27132685]
  78. Nat Commun. 2016 Jul 12;7:12064 [PMID: 27403562]
  79. J Mol Model. 2016 Sep;22(9):228 [PMID: 27568376]
  80. Cancer Discov. 2017 Jan;7(1):54-71 [PMID: 27784708]
  81. Cell. 2016 Nov 17;167(5):1170-1187 [PMID: 27863239]
  82. Genes Dev. 2017 Jan 1;31(1):18-33 [PMID: 28096186]
  83. EBioMedicine. 2017 Feb;16:63-75 [PMID: 28119061]
  84. Genes Dev. 2017 Jan 15;31(2):101-126 [PMID: 28202539]
  85. Lab Invest. 2017 Jun;97(6):649-656 [PMID: 28263292]
  86. J Mol Biol. 2017 May 5;429(9):1277-1288 [PMID: 28363678]
  87. Mol Cell. 2017 Jun 15;66(6):801-817 [PMID: 28622525]
  88. Nat Methods. 2017 Jun 29;14(7):645-646 [PMID: 28661499]
  89. Sci Rep. 2017 Sep 7;7(1):10909 [PMID: 28883623]
  90. Cell Death Differ. 2018 Jan;25(1):46-55 [PMID: 29053143]
  91. Nat Commun. 2017 Nov 23;8(1):1738 [PMID: 29170503]
  92. Nucleic Acids Res. 2017 Dec 15;45(22):12625-12637 [PMID: 29182755]
  93. Nat Commun. 2018 Feb 7;9(1):532 [PMID: 29416038]
  94. Stem Cells Dev. 2018 Jun 1;27(11):736-744 [PMID: 29635978]
  95. J Immunother Cancer. 2018 May 9;6(1):32 [PMID: 29743104]
  96. Pigment Cell Melanoma Res. 2019 Jan;32(1):9-24 [PMID: 29781575]
  97. Cancer Cell. 2018 Jul 9;34(1):56-68.e9 [PMID: 29990501]
  98. Nucleic Acids Res. 2019 Jan 8;47(D1):D433-D441 [PMID: 30445427]
  99. Oncogene. 1995 Nov 16;11(10):2157-64 [PMID: 7478537]
  100. Cell. 1994 Apr 8;77(1):21-32 [PMID: 8156594]
  101. Neuron. 1993 Dec;11(6):1197-206 [PMID: 8274283]
  102. Genes Dev. 1995 Dec 15;9(24):3109-21 [PMID: 8543155]
  103. Genes Dev. 1995 Dec 15;9(24):3122-35 [PMID: 8543156]
  104. J Biol Chem. 1996 Jul 19;271(29):17512-8 [PMID: 8663425]
  105. Genes Dev. 1997 Mar 15;11(6):701-13 [PMID: 9087425]
  106. Genes Dev. 1997 May 15;11(10):1207-25 [PMID: 9171367]
  107. Mol Biol Rep. 1997 Aug;24(3):139-55 [PMID: 9291088]
  108. Photodermatol Photoimmunol Photomed. 1997 Feb-Apr;13(1-2):64-6 [PMID: 9361131]

Grants

  1. P01 CA128814/NCI NIH HHS
  2. 106288/Z/14/Z/Wellcome Trust
  3. FDN 143301/CIHR
  4. 204562/Z/16/Z/Wellcome Trust
  5. /Wellcome Trust

MeSH Term

Apoptosis
Cell Line, Tumor
DNA End-Joining Repair
Gene Expression Regulation, Neoplastic
Homeodomain Proteins
Humans
Ku Autoantigen
Melanoma
Mutation
POU Domain Factors
Poly (ADP-Ribose) Polymerase-1
Protein Binding
Protein Domains
Protein Transport

Chemicals

Homeodomain Proteins
POU Domain Factors
transcription factor Brn-2
Poly (ADP-Ribose) Polymerase-1
Ku Autoantigen