The Long Non-coding RNA NRIR Drives IFN-Response in Monocytes: Implication for Systemic Sclerosis.

Barbara Mariotti, Nila Hendrika Servaas, Marzia Rossato, Nicola Tamassia, Marco A Cassatella, Marta Cossu, Lorenzo Beretta, Maarten van der Kroef, Timothy R D J Radstake, Flavia Bazzoni
Author Information
  1. Barbara Mariotti: General Pathology Section, Department of Medicine, University of Verona, Verona, Italy.
  2. Nila Hendrika Servaas: Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
  3. Marzia Rossato: Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
  4. Nicola Tamassia: General Pathology Section, Department of Medicine, University of Verona, Verona, Italy.
  5. Marco A Cassatella: General Pathology Section, Department of Medicine, University of Verona, Verona, Italy.
  6. Marta Cossu: Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
  7. Lorenzo Beretta: Scleroderma Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Referral Center for Systemic Autoimmune Diseases, Milan, Italy.
  8. Maarten van der Kroef: Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
  9. Timothy R D J Radstake: Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
  10. Flavia Bazzoni: General Pathology Section, Department of Medicine, University of Verona, Verona, Italy.

Abstract

TLR4 activation initiates a signaling cascade leading to the production of type I IFNs and of the downstream IFN-stimulated genes (ISGs). Recently, a number of IFN-induced long non-coding RNAs (lncRNAs) that feed-back regulate the IFN response have been identified. Dysregulation of this process, collectively known as the "Interferon (IFN) Response," represents a common molecular basis in the development of autoimmune and autoinflammatory disorders. Concurrently, alteration of lncRNA profile has been described in several type I IFN-driven autoimmune diseases. In particular, both TLR activation and the upregulation of ISGs in peripheral blood mononuclear cells have been identified as possible contributors to the pathogenesis of systemic sclerosis (SSc), a connective tissue disease characterized by vascular abnormalities, immune activation, and fibrosis. However, hitherto, a potential link between specific lncRNA and the presence of a type I IFN signature remains unclear in SSc. In this study, we identified, by RNA sequencing, a group of lncRNAs related to the IFN and anti-viral response consistently modulated in a type I IFN-dependent manner in human monocytes in response to TLR4 activation by LPS. Remarkably, these lncRNAs were concurrently upregulated in a total of 46 SSc patients in different stages of their disease as compared to 18 healthy controls enrolled in this study. Among these lncRNAs, Negative Regulator of the IFN Response (NRIR) was found significantly upregulated in SSc monocytes, strongly correlating with the IFN score of SSc patients. Weighted Gene Co-expression Network Analysis showed that NRIR-specific modules, identified in the two datasets, were enriched in "type I IFN" and "viral response" biological processes. Protein coding genes common to the two distinct NRIR modules were selected as putative NRIR target genes. Fifteen -predicted NRIR target genes were experimentally validated in NRIR-silenced monocytes. Remarkably, induction of CXCL10 and CXCL11, two IFN-related chemokines associated with SSc pathogenesis, was reduced in NRIR-knockdown monocytes, while their plasmatic level was increased in SSc patients. Collectively, our data show that NRIR affects the expression of ISGs and that dysregulation of NRIR in SSc monocytes may account, at least in part, for the type I IFN signature present in SSc patients.

Keywords

References

  1. Expert Rev Mol Med. 2013 Aug 28;15:e9 [PMID: 23985302]
  2. Curr Opin Immunol. 2014 Feb;26:140-6 [PMID: 24556411]
  3. Clin Exp Rheumatol. 2004 Sep-Oct;22(5):625-8 [PMID: 15485018]
  4. Immunotargets Ther. 2016 Aug 22;5:69-80 [PMID: 27579291]
  5. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  6. Sci Transl Med. 2014 Apr 16;6(232):232ra50 [PMID: 24739758]
  7. Genomics Proteomics Bioinformatics. 2017 Jun;15(3):177-186 [PMID: 28529100]
  8. Arthritis Rheum. 2008 Dec;58(12):3902-12 [PMID: 19035499]
  9. Ann Rheum Dis. 2016 Aug;75(8):1567-73 [PMID: 26371289]
  10. Pathog Immun. 2018;3(1):126-148 [PMID: 30135954]
  11. Arthritis Rheum. 2010 Feb;62(2):580-8 [PMID: 20112379]
  12. Immunol Cell Biol. 2015 Mar;93(3):277-83 [PMID: 25776990]
  13. J Rheumatol. 1988 Feb;15(2):202-5 [PMID: 3361530]
  14. Am J Pathol. 2013 Jan;182(1):192-205 [PMID: 23141927]
  15. J Immunol Res. 2015;2015:848790 [PMID: 26090502]
  16. Arthritis Rheum. 1999 Feb;42(2):299-305 [PMID: 10025924]
  17. Front Immunol. 2017 Aug 29;8:1038 [PMID: 28900427]
  18. Nat Immunol. 2002 Apr;3(4):392-8 [PMID: 11896392]
  19. Rheumatology (Oxford). 2015 Apr;54(4):707-11 [PMID: 25231181]
  20. J Allergy Clin Immunol. 2017 Jan;139(1):352-355.e6 [PMID: 27567327]
  21. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  22. Front Immunol. 2014 Oct 20;5:513 [PMID: 25368617]
  23. Ann Rheum Dis. 2014 Aug;73(8):1585-9 [PMID: 24718960]
  24. Clin Sci (Lond). 2014 Mar;126(5):329-37 [PMID: 24219159]
  25. Rheumatology (Oxford). 2006 Jun;45(6):694-702 [PMID: 16418202]
  26. J Invest Dermatol. 2015 Oct;135(10):2402-2409 [PMID: 25993119]
  27. JCI Insight. 2018 Jul 12;3(13): [PMID: 29997297]
  28. Arthritis Rheum. 2013 Jan;65(1):226-35 [PMID: 23055137]
  29. J Rheumatol. 2001 Jul;28(7):1573-6 [PMID: 11469464]
  30. PLoS One. 2011;6(7):e21800 [PMID: 21789182]
  31. Inflamm Res. 2018 Feb;67(2):169-177 [PMID: 29127442]
  32. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  33. PLoS One. 2012;7(3):e33508 [PMID: 22432031]
  34. Pflugers Arch. 2016 Jun;468(6):945-58 [PMID: 26944276]
  35. Ann Rheum Dis. 2010 Jul;69(7):1396-402 [PMID: 20472592]
  36. Arthritis Rheum. 2013 Nov;65(11):2737-47 [PMID: 24122180]
  37. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  38. Ann Rheum Dis. 2019 Apr;78(4):529-538 [PMID: 30793699]
  39. Biotechniques. 2002 Jun;32(6):1372-4, 1376, 1378-9 [PMID: 12074169]
  40. Front Immunol. 2017 Jan 03;7:535 [PMID: 28096800]
  41. Curr Rheumatol Rep. 2015 Jan;17(1):474 [PMID: 25604573]
  42. Methods Mol Biol. 2009;514:119-33 [PMID: 19048217]
  43. J Rheumatol. 2008 Nov;35(11):2192-200 [PMID: 18843779]
  44. Nucleic Acids Res. 2014;42(16):10668-80 [PMID: 25122750]
  45. BMC Bioinformatics. 2006 Jun 15;7:302 [PMID: 16776819]
  46. Open Rheumatol J. 2012;6:72-9 [PMID: 22802904]
  47. Nat Rev Immunol. 2014 Jan;14(1):36-49 [PMID: 24362405]
  48. Trends Immunol. 2014 Sep;35(9):408-19 [PMID: 25113636]
  49. Semin Immunol. 2004 Feb;16(1):3-9 [PMID: 14751757]
  50. Nat Struct Mol Biol. 2012 Nov;19(11):1068-75 [PMID: 23132386]
  51. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  52. Int J Inflam. 2017;2017:8391230 [PMID: 28553556]
  53. Respir Res. 2017 Jan 5;18(1):3 [PMID: 28057004]
  54. Arthritis Rheumatol. 2016 Apr;68(4):845-56 [PMID: 27023358]
  55. FASEB J. 2015 Sep;29(9):3595-611 [PMID: 26065857]
  56. Nature. 2009 Mar 12;458(7235):223-7 [PMID: 19182780]
  57. Arthritis Rheumatol. 2017 Dec;69(12):2359-2369 [PMID: 28859262]
  58. J Immunol. 2007 Jun 1;178(11):7344-56 [PMID: 17513785]
  59. Immunity. 2015 May 19;42(5):792-804 [PMID: 25992856]
  60. Front Immunol. 2014 Nov 13;5:573 [PMID: 25431574]
  61. Clin Rheumatol. 2017 Jul;36(7):1649-1654 [PMID: 28293753]
  62. Ann Rheum Dis. 2018 Dec;77(12):1845-1846 [PMID: 29760155]
  63. Arthritis Rheum. 2007 Mar;56(3):1010-20 [PMID: 17328080]
  64. Arthritis Rheum. 2011 Jun;63(6):1718-28 [PMID: 21425123]
  65. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W305-11 [PMID: 19465376]
  66. Rheumatology (Oxford). 2008 Jan;47(1):45-9 [PMID: 18077490]

MeSH Term

Adult
Aged
Cells, Cultured
Female
Gene Knockdown Techniques
Gene Regulatory Networks
Humans
Interferon Type I
Lipopolysaccharides
Male
Middle Aged
Monocytes
RNA, Long Noncoding
Scleroderma, Systemic
Sequence Analysis, RNA
Signal Transduction
Toll-Like Receptor 4
Up-Regulation

Chemicals

Interferon Type I
Lipopolysaccharides
RNA, Long Noncoding
Toll-Like Receptor 4