COX-2 mediates tumor-stromal prolactin signaling to initiate tumorigenesis.

Yu Zheng, Valentine Comaills, Risa Burr, Gaylor Boulay, David T Miyamoto, Ben S Wittner, Erin Emmons, Srinjoy Sil, Michael W Koulopoulos, Katherine T Broderick, Eric Tai, Shruthi Rengarajan, Anupriya S Kulkarni, Toshi Shioda, Chin-Lee Wu, Sridhar Ramaswamy, David T Ting, Mehmet Toner, Miguel N Rivera, Shyamala Maheswaran, Daniel A Haber
Author Information
  1. Yu Zheng: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  2. Valentine Comaills: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  3. Risa Burr: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  4. Gaylor Boulay: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  5. David T Miyamoto: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  6. Ben S Wittner: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  7. Erin Emmons: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  8. Srinjoy Sil: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  9. Michael W Koulopoulos: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  10. Katherine T Broderick: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  11. Eric Tai: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  12. Shruthi Rengarajan: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  13. Anupriya S Kulkarni: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  14. Toshi Shioda: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  15. Chin-Lee Wu: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  16. Sridhar Ramaswamy: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  17. David T Ting: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  18. Mehmet Toner: Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.
  19. Miguel N Rivera: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  20. Shyamala Maheswaran: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  21. Daniel A Haber: Massachusetts General Hospital Cancer Center,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129; dhaber@mgh.harvard.edu.

Abstract

Tumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single-cell RNA sequencing in an orthotopic mouse prostate cancer model, we find up-regulation of prolactin receptor as cancer cells that have disseminated to the lungs expand into micrometastases. Secretion of the ligand prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E2 (PGE2). PGE2 treatment of fibroblasts activates the orphan nuclear receptor NR4A (Nur77), with prolactin as a major transcriptional target for the NR4A-retinoid X receptor (RXR) heterodimer. Ectopic expression of prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor celecoxib abrogates prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, prolactin, and prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine cross-talk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression.

Keywords

References

  1. N Engl J Med. 2000 Jun 29;342(26):1946-52 [PMID: 10874062]
  2. Cancer Res. 2000 Nov 1;60(21):6045-51 [PMID: 11085526]
  3. J Biol Chem. 2001 Apr 20;276(16):12697-701 [PMID: 11278809]
  4. Mol Endocrinol. 2002 Jan;16(1):45-57 [PMID: 11773438]
  5. Cancer Res. 2003 Nov 15;63(22):7845-52 [PMID: 14633712]
  6. Cancer Res. 2004 Jul 15;64(14):4774-82 [PMID: 15256446]
  7. Cell Death Differ. 2004 Dec;11 Suppl 2:S126-43 [PMID: 15608692]
  8. N Engl J Med. 2005 Mar 17;352(11):1071-80 [PMID: 15713944]
  9. Endocr Rev. 2005 May;26(3):400-22 [PMID: 15814850]
  10. J Biol Chem. 2006 Feb 3;281(5):2676-82 [PMID: 16293616]
  11. Nucl Recept Signal. 2006;4:e002 [PMID: 16604165]
  12. N Engl J Med. 1991 Dec 5;325(23):1593-6 [PMID: 1669840]
  13. J Clin Oncol. 2006 Jun 20;24(18):2723-8 [PMID: 16782912]
  14. N Engl J Med. 2006 Aug 31;355(9):873-84 [PMID: 16943400]
  15. N Engl J Med. 2006 Aug 31;355(9):885-95 [PMID: 16943401]
  16. N Engl J Med. 2007 May 24;356(21):2131-42 [PMID: 17522398]
  17. J Cardiovasc Pharmacol. 2007 Nov;50(5):470-9 [PMID: 18030055]
  18. Mod Pathol. 2008 May;21(5):565-71 [PMID: 18246042]
  19. Nat Genet. 2008 Jul;40(7):897-903 [PMID: 18552846]
  20. Science. 1991 May 31;252(5010):1296-300 [PMID: 1925541]
  21. Horm Cancer. 2010 Feb;1(1):44-54 [PMID: 20631921]
  22. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6 [PMID: 21106759]
  23. Lancet. 2011 Jan 1;377(9759):31-41 [PMID: 21144578]
  24. Biochem Biophys Res Commun. 2011 Jan 14;404(2):628-33 [PMID: 21146499]
  25. Nat Rev Urol. 2011 Oct 04;8(11):597-607 [PMID: 21971318]
  26. J Exp Med. 2011 Dec 19;208(13):2641-55 [PMID: 22124112]
  27. Lancet. 2012 Apr 28;379(9826):1591-601 [PMID: 22440947]
  28. Cell. 2012 Aug 17;150(4):764-79 [PMID: 22901808]
  29. N Engl J Med. 2012 Oct 25;367(17):1596-606 [PMID: 23094721]
  30. Sci Transl Med. 2013 Apr 3;5(179):179ra47 [PMID: 23552373]
  31. Indian J Endocrinol Metab. 2012 Dec;16(Suppl 2):S195-8 [PMID: 23565377]
  32. Nat Cell Biol. 2013 Nov;15(11):1351-61 [PMID: 24161934]
  33. Nat Med. 2013 Nov;19(11):1423-37 [PMID: 24202395]
  34. Cell. 2013 Nov 7;155(4):750-64 [PMID: 24209616]
  35. Toxicol Lett. 2014 Mar 3;225(2):201-7 [PMID: 24374173]
  36. Mol Endocrinol. 2014 Oct;28(10):1729-39 [PMID: 25099012]
  37. Cell Death Dis. 2014 Dec 11;5:e1568 [PMID: 25501829]
  38. Science. 2015 Jan 23;347(6220):1260419 [PMID: 25613900]
  39. J Inflamm (Lond). 2015 Feb 18;12:13 [PMID: 25717285]
  40. J Steroid Biochem Mol Biol. 2016 Mar;157:48-60 [PMID: 25917081]
  41. Gastroenterology. 2015 Dec;149(7):1884-1895.e4 [PMID: 26261008]
  42. Cell. 2015 Sep 10;162(6):1257-70 [PMID: 26343581]
  43. Nature. 2015 Oct 1;526(7571):131-5 [PMID: 26416748]
  44. Nature. 2016 Jan 21;529(7586):298-306 [PMID: 26791720]
  45. PLoS One. 2016 Mar 03;11(3):e0150450 [PMID: 26938745]
  46. Cancer Discov. 2016 May;6(5):479-91 [PMID: 26969689]
  47. Cell. 2016 Mar 24;165(1):45-60 [PMID: 27015306]
  48. J Exp Pharmacol. 2012 Aug 10;4:91-6 [PMID: 27186121]
  49. Cancer Cell. 2016 Jul 11;30(1):108-119 [PMID: 27374223]
  50. BJU Int. 2017 May;119(5):709-716 [PMID: 27480340]
  51. J Clin Oncol. 2017 May 10;35(14):1530-1541 [PMID: 28300506]
  52. Oncogene. 2017 Aug 10;36(32):4597-4609 [PMID: 28368394]
  53. Genes Dev. 2017 Sep 15;31(18):1827-1840 [PMID: 29051388]
  54. Science. 2018 Feb 23;359(6378):926-930 [PMID: 29348365]
  55. Genes Dev. 1995 Apr 1;9(7):769-82 [PMID: 7705655]
  56. Cell. 1995 May 19;81(4):541-50 [PMID: 7758108]
  57. Cancer Res. 1995 Jun 15;55(12):2591-5 [PMID: 7780973]
  58. Cell. 1995 Dec 15;83(6):841-50 [PMID: 8521508]
  59. Psychoneuroendocrinology. 1996 Jan;21(1):17-24 [PMID: 8778900]
  60. Endocr Rev. 1996 Dec;17(6):639-69 [PMID: 8969972]
  61. J Med Chem. 1997 Apr 25;40(9):1347-65 [PMID: 9135032]
  62. Endocr Rev. 1998 Jun;19(3):225-68 [PMID: 9626554]

Grants

  1. R01 CA129933/NCI NIH HHS
  2. R01 EB008047/NIBIB NIH HHS
  3. U01 EB012493/NIBIB NIH HHS
  4. /Howard Hughes Medical Institute

MeSH Term

Animals
Carcinogenesis
Celecoxib
Cell Transformation, Neoplastic
Cyclooxygenase 2
Cyclooxygenase 2 Inhibitors
Dinoprostone
Disease Models, Animal
Fibroblasts
Humans
Male
Mice
Nuclear Receptor Subfamily 4, Group A, Member 1
Prolactin
Prostatic Neoplasms
Retinoid X Receptors
Signal Transduction
Stromal Cells
Up-Regulation

Chemicals

Cyclooxygenase 2 Inhibitors
Nuclear Receptor Subfamily 4, Group A, Member 1
Retinoid X Receptors
Prolactin
Cyclooxygenase 2
Celecoxib
Dinoprostone