Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement.

Kun Lu, Lijuan Wei, Xiaolong Li, Yuntong Wang, Jian Wu, Miao Liu, Chao Zhang, Zhiyou Chen, Zhongchun Xiao, Hongju Jian, Feng Cheng, Kai Zhang, Hai Du, Xinchao Cheng, Cunming Qu, Wei Qian, Liezhao Liu, Rui Wang, Qingyuan Zou, Jiamin Ying, Xingfu Xu, Jiaqing Mei, Ying Liang, You-Rong Chai, Zhanglin Tang, Huafang Wan, Yu Ni, Yajun He, Na Lin, Yonghai Fan, Wei Sun, Nan-Nan Li, Gang Zhou, Hongkun Zheng, Xiaowu Wang, Andrew H Paterson, Jiana Li
Author Information
  1. Kun Lu: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China. ORCID
  2. Lijuan Wei: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  3. Xiaolong Li: Biomarker Technologies Corporation, 101300, Beijing, China.
  4. Yuntong Wang: Biomarker Technologies Corporation, 101300, Beijing, China.
  5. Jian Wu: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, 100081, Beijing, China.
  6. Miao Liu: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  7. Chao Zhang: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  8. Zhiyou Chen: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  9. Zhongchun Xiao: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  10. Hongju Jian: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  11. Feng Cheng: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, 100081, Beijing, China. ORCID
  12. Kai Zhang: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  13. Hai Du: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  14. Xinchao Cheng: State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China.
  15. Cunming Qu: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  16. Wei Qian: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  17. Liezhao Liu: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  18. Rui Wang: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  19. Qingyuan Zou: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  20. Jiamin Ying: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  21. Xingfu Xu: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  22. Jiaqing Mei: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  23. Ying Liang: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  24. You-Rong Chai: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  25. Zhanglin Tang: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  26. Huafang Wan: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  27. Yu Ni: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  28. Yajun He: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  29. Na Lin: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  30. Yonghai Fan: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  31. Wei Sun: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.
  32. Nan-Nan Li: Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.
  33. Gang Zhou: Biomarker Technologies Corporation, 101300, Beijing, China. ORCID
  34. Hongkun Zheng: Biomarker Technologies Corporation, 101300, Beijing, China. ORCID
  35. Xiaowu Wang: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, 100081, Beijing, China. wangxw@mail.caas.net.cn.
  36. Andrew H Paterson: Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, 30605, USA. paterson@uga.edu.
  37. Jiana Li: College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China. ljn1950@swu.edu.cn.

Abstract

Brassica napus (2n = 4x = 38, AACC) is an important allopolyploid crop derived from interspecific crosses between Brassica rapa (2n = 2x = 20, AA) and Brassica oleracea (2n = 2x = 18, CC). However, no truly wild B. napus populations are known; its origin and improvement processes remain unclear. Here, we resequence 588 B. napus accessions. We uncover that the A subgenome may evolve from the ancestor of European turnip and the C subgenome may evolve from the common ancestor of kohlrabi, cauliflower, broccoli, and Chinese kale. Additionally, winter oilseed may be the original form of B. napus. Subgenome-specific selection of defense-response genes has contributed to environmental adaptation after formation of the species, whereas asymmetrical subgenomic selection has led to ecotype change. By integrating genome-wide association studies, selection signals, and transcriptome analyses, we identify genes associated with improved stress tolerance, oil content, seed quality, and ecotype improvement. They are candidates for further functional characterization and genetic improvement of B. napus.

References

  1. Allender, C. J. & King, G. J. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol. 10, 54 (2010). [PMID: 20350303]
  2. Snowdon, R., Lühs, W. & Friedt, W. Oilseeds Ch. 2 (Springer, Berlin, Heidelberg, 2007).
  3. Nagaharu, U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J. Bot. 7, 389–452 (1935).
  4. Sun, F. et al. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J. 92, 452–468 (2017). [PMID: 28849613]
  5. Chalhoub, B. et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953 (2014). [PMID: 25146293]
  6. Yang, J. et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 48, 1225–1232 (2016). [PMID: 27595476]
  7. Gómez-Campo, C. & Prakash, S. in Biology of Brassica Coenospecies (ed. Gómez-Campo C.) 33–58 (Elsevier, Amsterdam 1999).
  8. Bonnema, G. in Genetics, Genomics and Breeding of Oilseed Brassicas (eds. Edwards, D., Batley, J., Parkin, I. & Kole, C.) 47–72 (CRC Press, Boca Raton 2012).
  9. Qian, W. et al. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor. Appl. Genet. 113, 49–54 (2006). [PMID: 16604336]
  10. Song, K. & Osborn, T. C. Polyphyletic origins of Brassica napus: new evidence based on organelle and nuclear RFLP analyses. Genome 35, 992–1001 (1992). [DOI: 10.1139/g92-152]
  11. Song, K. M., Osborn, T. C. & Williams, P. H. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor. Appl. Genet. 75, 784–794 (1988). [DOI: 10.1007/BF00265606]
  12. Xu, X. et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30, 105–111 (2012). [DOI: 10.1038/nbt.2050]
  13. Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014). [PMID: 25305757]
  14. Zhou, Z. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408–414 (2015). [PMID: 25643055]
  15. Wang, X. X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035–1039 (2011). [PMID: 21873998]
  16. Liu, S. et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 5, 1–11 (2014).
  17. Parkin, I. A. et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 15, R77 (2014). [PMID: 24916971]
  18. Cheng, F. et al. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat. Genet. 48, 1–10 (2016). [DOI: 10.1038/ng.3483]
  19. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating Maximum-Likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). [PMID: 25371430]
  20. Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009). [PMID: 19851460]
  21. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013). [PMID: 24204310]
  22. Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017). [PMID: 28024154]
  23. Hasan, M. et al. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor. Appl. Genet. 116, 1035–1049 (2008). [PMID: 18322671]
  24. Wang, S. B. et al. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci. Rep. 6, 19444 (2016). [PMID: 26787347]
  25. Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016). [PMID: 26748515]
  26. Qu, C. et al. Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genom. 18, 232 (2017). [DOI: 10.1186/s12864-017-3607-8]
  27. Lu, K. et al. Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front. Plant Sci. 8, 206 (2017). [PMID: 28261256]
  28. Liu, S. et al. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor. Appl. Genet. 129, 1–13 (2016). [DOI: 10.1007/s00122-015-2595-9]
  29. Iuchi, S. et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27, 325–333 (2001). [PMID: 11532178]
  30. Frey, A. et al. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant J. 70, 501–512 (2012). [PMID: 22171989]
  31. Fu, Z. Q. et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486, 228–232 (2012). [PMID: 22699612]
  32. Nour-Eldin, H. H. et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488, 531–534 (2012). [PMID: 22864417]
  33. Wu, G., Wu, Y., Xiao, L., Li, X. & Lu, C. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor. Appl. Genet. 116, 491–499 (2008). [PMID: 18075728]
  34. Bouché, F., Lobet, G., Tocquin, P. & Périlleux, C. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 44, D1167–D1171 (2016). [PMID: 26476447]
  35. Whittaker, C. & Dean, C. The FLC Locus: a platform for discoveries in epigenetics and adaptation changes may still occur before final publication. Annu. Rev. Cell Dev. Biol. 338, 1–8 (2017).
  36. Chen, L. et al. A 2.833-kb insertion in BnFLC.A2 and its homeologous exchange with BnFLC.C2 during breeding selection generated early-flowering rapeseed. Mol. Plant 1, 222–225 (2018). [DOI: 10.1016/j.molp.2017.09.020]
  37. Van Lijsebettens, M. & Grasser, K. D. The role of the transcript elongation factors FACT and HUB1 in leaf growth and the induction of flowering. Plant Signal. Behav. 5, 715–717 (2010). [PMID: 20404555]
  38. Bastow, R. et al. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164–167 (2004). [PMID: 14712277]
  39. Wu, G.-Z. & Xue, H.-W. Arabidopsis β-ketoacyl-[acyl carrier protein] synthase I is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development. Plant Cell 22, 3726–3744 (2010). [PMID: 21081696]
  40. Moreno-Pérez, A. J. et al. Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Planta 235, 629–639 (2012). [PMID: 22002626]
  41. Liu, J. et al. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl Acad. Sci. USA 112, 5123–5132 (2015). [DOI: 10.1073/pnas.1423244112]
  42. Gonzalez-Grandio, E. et al. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell 25, 834–850 (2013). [PMID: 23524661]
  43. Zou, H.-F. et al. The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochem. J. 449, 373–388 (2013). [PMID: 23095045]
  44. Ignatov, A. N., Artemyeva, A. M. & Hida, K. Origin and expansion of cultivated Brassica rapa in Eurasia: linguistic facts. Acta Hortic. 867, 81–88 (2010). [DOI: 10.17660/ActaHortic.2010.867.9]
  45. Reiner, H., Holzner, W. & Ebermann, R. The development of turnip-type and oilseed-type Brassica rapa crops from the wild type in Europe-An overview of botanical, historical and linguistic facts. Proc. 9th Int. Rapeseed Congr. 4, 1066–1069 (1995).
  46. Qi, X. et al. Genomic inferences of domestication events are corroborated by written records in Brassica rapa. Mol. Ecol. 26, 3373–3388 (2017). [PMID: 28371014]
  47. Wang, M. et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat. Genet. 49, 579–587 (2017). [PMID: 28263319]
  48. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). [PMID: 24695404]
  49. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). [PMID: 19451168]
  50. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). [PMID: 20644199]
  51. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016). [PMID: 27095192]
  52. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006). [PMID: 16862161]
  53. Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005). [PMID: 15969739]
  54. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000). [PMID: 10835412]
  55. Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). [PMID: 17701901]
  56. Lancashire, P. D. et al. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 119, 561–601 (1991). [DOI: 10.1111/j.1744-7348.1991.tb04895.x]
  57. Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 20, 393–402 (2010). [PMID: 20086244]
  58. Szpiech, Z. A. & Hernandez, R. D. Selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827 (2014). [PMID: 25015648]
  59. Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016). [PMID: 26748515]
  60. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). [DOI: 10.1093/bioinformatics/bts635]
  61. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with topHat and cufflinks. Nat. Protoc. 7, 562–578 (2013). [DOI: 10.1038/nprot.2012.016]
  62. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012). [PMID: 22455463]

MeSH Term

Acclimatization
Brassica napus
Brassica rapa
Chromosomes, Plant
Ecotype
Gene Expression Profiling
Genetic Loci
Genetic Speciation
Genome, Plant
Plant Breeding
Seeds
Whole Genome Sequencing

Word Cloud

Similar Articles

Cited By