RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L.

Shengcai Liu, Xueli Zheng, Junfei Pan, Liyun Peng, Chunzhen Cheng, Xiao Wang, Chunli Zhao, Zihao Zhang, Yuling Lin, Xu XuHan, Zhongxiong Lai
Author Information
  1. Shengcai Liu: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
  2. Xueli Zheng: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
  3. Junfei Pan: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
  4. Liyun Peng: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
  5. Chunzhen Cheng: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
  6. Xiao Wang: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
  7. Chunli Zhao: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
  8. Zihao Zhang: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
  9. Yuling Lin: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
  10. Xu XuHan: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
  11. Zhongxiong Lai: Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID

Abstract

Amaranth plants contain large amounts of betalains, including betaxanthins and betacyanins. Amaranthin is a betacyanin, and its molecular structure and associated metabolic pathway differ from those of betanin in beet plants. The chlorophyll, carotenoid, betalain, and flavonoid contents in amaranth leaves were analyzed. The abundance of betalain, betacyanin, and betaxanthin was 2-5-fold higher in the red leaf sectors than in the green leaf sectors. Moreover, a transcriptome database was constructed for the red and green sectors of amaranth leaves harvested from 30-day-old seedlings. 22 unigenes were selected to analyze the expression profiles in the two leaf sectors. The RNA-sequencing data indicated that many unigenes are involved in betalain metabolic pathways. The potential relationships between diverse metabolic pathways and betalain metabolism were analyzed. The validation of the expression of 22 selected unigenes in a qRT-PCR assay revealed the genes that were differentially expressed in the two leaf sectors. Betalains were biosynthesized in specific tissues of the red sectors of amaranth leaves. Almost all of the genes related to betalain metabolism were identified in the transcriptome database, and the expression profiles were different between the red sectors and green sectors in the leaf. Amaranth plants consist of diverse metabolic pathways, and the betalain metabolic pathway is linked to a group of other metabolic pathways.

References

Plant Physiol. 2004 Jan;134(1):265-74 [PMID: 14730069]
PLoS One. 2014 Jun 25;9(6):e100919 [PMID: 24963660]
Trends Plant Sci. 2013 Jun;18(6):334-43 [PMID: 23395307]
Plant Physiol. 1995 Apr;107(4):1083-9 [PMID: 7539531]
J Ayurveda Integr Med. 2013 Oct;4(4):211-5 [PMID: 24459387]
Int J Mol Sci. 2015 Nov 12;16(11):27032-43 [PMID: 26569235]
J Chromatogr Sci. 2005 Oct;43(9):454-60 [PMID: 16212790]
New Phytol. 2011 Jun;190(4):854-64 [PMID: 21714182]
Funct Plant Biol. 2016 Mar;43(3):278-286 [PMID: 32480460]
BMC Genomics. 2011 Jul 13;12:363 [PMID: 21752295]
BMC Plant Biol. 2012 Mar 12;12:34 [PMID: 22409631]
New Phytol. 2016 Apr;210(1):269-83 [PMID: 26683006]
New Phytol. 2016 Apr;210(1):6-9 [PMID: 26919693]
Front Plant Sci. 2016 Jan 08;6:1228 [PMID: 26779247]
J Exp Bot. 2005 Feb;56(412):605-11 [PMID: 15582929]
Food Res Int. 2017 Oct;100(Pt 3):501-509 [PMID: 28964374]
Plant J. 2008 May;54(4):733-49 [PMID: 18476875]
Adv Enzymol Relat Subj Biochem. 1953;14:73-128 [PMID: 13057714]
J Agric Food Chem. 2013 Dec 11;61(49):11995-2004 [PMID: 24168389]
Food Chem. 2017 Nov 1;234:285-294 [PMID: 28551238]
Planta. 1975 Jan;127(2):149-52 [PMID: 24430371]
Front Plant Sci. 2015 Jul 07;6:499 [PMID: 26217353]
Crit Rev Food Sci Nutr. 2013;53(2):109-25 [PMID: 23072528]
Phytochemistry. 2003 Feb;62(3):247-69 [PMID: 12620337]
J Nutr Biochem. 2016 Jun;32:1-19 [PMID: 27142731]
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):9062-9067 [PMID: 28760998]
Biotechnol Lett. 2016 Apr;38(4):723-9 [PMID: 26712368]
Front Plant Sci. 2016 Jan 05;6:1179 [PMID: 26779215]
J Food Sci Technol. 2015 Aug;52(8):4994-5002 [PMID: 26243919]
Phytochemistry. 2006 Nov;67(21):2318-31 [PMID: 16973188]
Planta. 1975 Jan;127(3):207-12 [PMID: 24430470]
Mol Nutr Food Res. 2015 Jan;59(1):36-47 [PMID: 25178819]
PLoS One. 2016 Feb 18;11(2):e0149417 [PMID: 26890886]
Antioxidants (Basel). 2015 Apr 01;4(2):269-80 [PMID: 26783704]
Food Chem. 2016 Jun 15;201:14-22 [PMID: 26868542]
Prikl Biokhim Mikrobiol. 2002 Sep-Oct;38(5):556-62 [PMID: 12391759]
J Agric Food Chem. 2006 Sep 6;54(18):6520-6 [PMID: 16939305]
Nat Genet. 2012 Jun 03;44(7):816-20 [PMID: 22660548]
J Sci Food Agric. 2015 Apr;95(6):1283-93 [PMID: 25042091]
Plant Physiol. 2004 Mar;134(3):1050-7 [PMID: 14963246]
New Phytol. 2015 Sep;207(4):1170-80 [PMID: 25966996]
Nat Genet. 2015 Jan;47(1):92-6 [PMID: 25436858]
J Chromatogr A. 2014 May 30;1344:42-50 [PMID: 24767836]

MeSH Term

Amaranthus
Betalains
Carotenoids
Chlorophyll
Flavonoids
Gene Expression Regulation, Plant
Gene Ontology
Genes, Plant
Molecular Sequence Annotation
Plant Leaves
Sequence Analysis, RNA
Transcriptome

Chemicals

Flavonoids
Chlorophyll
Carotenoids
Betalains

Word Cloud

Similar Articles

Cited By