HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations.

Nir Drayman, Parthiv Patel, Luke Vistain, Sava�� Tay
Author Information
  1. Nir Drayman: Institute for Molecular Engineering, The University of Chicago, Chicago, United States. ORCID
  2. Parthiv Patel: Institute for Molecular Engineering, The University of Chicago, Chicago, United States.
  3. Luke Vistain: Institute for Molecular Engineering, The University of Chicago, Chicago, United States.
  4. Sava�� Tay: Institute for Molecular Engineering, The University of Chicago, Chicago, United States.

Abstract

Viral infection is usually studied at the population level by averaging over millions of cells. However, infection at the single-cell level is highly heterogeneous, with most infected cells giving rise to no or few viral progeny while some cells produce thousands. Analysis of Herpes Simplex virus 1 (HSV-1) infection by population-averaged measurements has taught us a lot about the course of viral infection, but has also produced contradictory results, such as the concurrent activation and inhibition of type I interferon signaling during infection. Here, we combine live-cell imaging and single-cell RNA sequencing to characterize viral and host transcriptional heterogeneity during HSV-1 infection of primary human cells. We find extreme variability in the level of viral gene expression among individually infected cells and show that these cells cluster into transcriptionally distinct sub-populations. We find that anti-viral signaling is initiated in a rare group of abortively infected cells, while highly infected cells undergo cellular reprogramming to an embryonic-like transcriptional state. This reprogramming involves the recruitment of ��-catenin to the host nucleus and viral replication compartments, and is required for late viral gene expression and progeny production. These findings uncover the transcriptional differences in cells with variable infection outcomes and shed new light on the manipulation of host pathways by HSV-1.

Keywords

Associated Data

GEO | GSE126042

References

  1. J Virol. 2016 Sep 29;90(20):9406-19 [PMID: 27512060]
  2. J Virol. 2013 Dec;87(24):13141-9 [PMID: 24067967]
  3. Virology. 2009 Mar 1;385(1):39-46 [PMID: 19070881]
  4. mBio. 2018 Mar 13;9(2): [PMID: 29535194]
  5. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):5954-63 [PMID: 21393571]
  6. J Virol. 2016 Jul 27;90(16):7084-7097 [PMID: 27226375]
  7. J Virol. 1995 Jan;69(1):49-59 [PMID: 7983745]
  8. Mol Cell Proteomics. 2017 Apr;16(4 suppl 1):S92-S107 [PMID: 28179408]
  9. Nat Commun. 2015 Nov 20;6:8938 [PMID: 26586423]
  10. J Virol. 2018 Mar 28;92(8): [PMID: 29437966]
  11. J Virol. 1980 Oct;36(1):189-203 [PMID: 6255206]
  12. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  13. Crit Rev Oncol Hematol. 2016 Mar;99:141-9 [PMID: 26775730]
  14. PLoS One. 2018 Jan 11;13(1):e0191010 [PMID: 29324866]
  15. Elife. 2019 May 15;8: [PMID: 31090537]
  16. Science. 2008 Dec 5;322(5907):1511-6 [PMID: 19023046]
  17. Sci Signal. 2015 Feb 10;8(363):ra16 [PMID: 25670204]
  18. PLoS Pathog. 2013;9(9):e1003611 [PMID: 24086132]
  19. PLoS Pathog. 2017 Jan 17;13(1):e1006166 [PMID: 28095497]
  20. Gene. 2001 Jun 27;271(2):117-30 [PMID: 11418233]
  21. J Virol. 2004 Feb;78(4):1675-84 [PMID: 14747533]
  22. PLoS Pathog. 2018 Mar 26;14(3):e1006954 [PMID: 29579120]
  23. Cold Spring Harb Perspect Biol. 2012 Sep 01;4(9):a013011 [PMID: 22952399]
  24. Nature. 1970 Apr 25;226(5243):325-7 [PMID: 5439728]
  25. Cell Syst. 2018 Jun 27;6(6):679-691.e4 [PMID: 29886109]
  26. Nucleic Acids Res. 2013 May 1;41(10):e108 [PMID: 23558742]
  27. J Virol. 2000 Nov;74(21):10041-54 [PMID: 11024133]
  28. PLoS Pathog. 2015 May 27;11(5):e1004939 [PMID: 26018390]
  29. Arch Virol. 2017 Oct;162(10):2937-2947 [PMID: 28685286]
  30. Front Pharmacol. 2017 May 16;8:270 [PMID: 28559846]
  31. J Virol. 2019 Mar 5;93(6): [PMID: 30626670]
  32. J Exp Med. 1938 Apr 30;67(5):725-38 [PMID: 19870751]
  33. Cell. 1988 Dec 2;55(5):857-68 [PMID: 2847874]
  34. Genome Biol. 2017 Oct 31;18(1):209 [PMID: 29089033]
  35. Elife. 2018 Feb 16;7: [PMID: 29451494]
  36. Curr Opin Genet Dev. 2011 Dec;21(6):753-8 [PMID: 22005655]
  37. Virology. 2010 Jan 5;396(1):21-9 [PMID: 19879619]
  38. J Virol. 2004 Jul;78(13):6744-57 [PMID: 15194749]
  39. Nucleus. 2012 Nov-Dec;3(6):526-39 [PMID: 22929056]
  40. J Virol. 2013 Dec;87(24):13911-6 [PMID: 24109241]
  41. Nature. 1980 May 29;285(5763):329-30 [PMID: 6246451]
  42. Int J Mol Med. 2011 Oct;28(4):595-8 [PMID: 21725588]
  43. J Virol. 2006 Aug;80(15):7600-12 [PMID: 16840339]
  44. J Virol. 1985 Nov;56(2):558-70 [PMID: 2997476]
  45. PLoS Biol. 2012 Jan;10(1):e1001249 [PMID: 22291574]
  46. Cell Rep. 2014 Aug 21;8(4):1026-36 [PMID: 25127138]
  47. Sci Rep. 2016 Jun 29;6:28075 [PMID: 27354008]
  48. Nat Microbiol. 2019 Jan;4(1):164-176 [PMID: 30420784]
  49. J Virol. 2014 Jun;88(11):6205-12 [PMID: 24648454]
  50. Nat Rev Clin Oncol. 2015 Aug;12(8):445-64 [PMID: 25850553]
  51. Mol Syst Biol. 2012 Apr 24;8:579 [PMID: 22531119]
  52. Virol J. 2016 Mar 08;13:38 [PMID: 26952111]
  53. J Virol. 2015 Dec 16;90(5):2503-13 [PMID: 26676778]
  54. Viruses. 2017 Aug 07;9(8): [PMID: 28783105]
  55. Development. 2011 Oct;138(20):4341-50 [PMID: 21903672]
  56. Oncoimmunology. 2015 Dec 8;5(1):e1115641 [PMID: 26942095]
  57. Adv Exp Med Biol. 2018;1045:63-84 [PMID: 29896663]
  58. J Virol. 2017 Nov 14;91(23): [PMID: 28904192]
  59. Cells. 2014 May 20;3(2):438-54 [PMID: 24852129]
  60. Nat Rev Microbiol. 2013 May;11(5):327-36 [PMID: 23524517]
  61. PLoS Pathog. 2016 Dec 6;12(12):e1006082 [PMID: 27923068]
  62. J Gen Virol. 1986 Dec;67 ( Pt 12):2571-85 [PMID: 3025339]
  63. Science. 2002 Aug 16;297(5584):1183-6 [PMID: 12183631]
  64. Nat Immunol. 2018 Jan;19(1):53-62 [PMID: 29180807]
  65. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17031-6 [PMID: 12481033]
  66. Cell Signal. 2014 Mar;26(3):570-9 [PMID: 24308963]
  67. J Immunother Cancer. 2015 Sep 15;3:43 [PMID: 26380088]
  68. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  69. Elife. 2018 Feb 16;7: [PMID: 29451492]
  70. J Bacteriol. 1945 Aug;50:131-5 [PMID: 20989330]
  71. Cell Host Microbe. 2015 Oct 14;18(4):424-32 [PMID: 26468746]
  72. J Virol. 2019 Jun 28;93(14): [PMID: 31068418]
  73. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1276-80 [PMID: 165503]
  74. Cell. 2015 Jan 29;160(3):381-92 [PMID: 25635454]
  75. Rev Med Virol. 2016 Sep;26(5):340-55 [PMID: 27273590]
  76. Nature. 2005 Apr 14;434(7035):843-50 [PMID: 15829953]
  77. EMBO J. 2016 Jul 1;35(13):1385-99 [PMID: 27234299]
  78. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  79. J Virol. 2014 Jun;88(12):6847-61 [PMID: 24719411]
  80. Nature. 2010 Jul 8;466(7303):267-71 [PMID: 20581820]
  81. J Virol. 1974 Jul;14(1):8-19 [PMID: 4365321]
  82. Virus Res. 2018 Sep 2;256:29-37 [PMID: 30077727]
  83. Proteomics. 2015 Jun;15(12):1957-67 [PMID: 25809282]
  84. J Virol. 1987 Feb;61(2):276-84 [PMID: 3027360]
  85. Nat Commun. 2016 Nov 10;7:13348 [PMID: 27830700]
  86. J Gen Microbiol. 1959 Feb;20(1):105-12 [PMID: 13631187]
  87. mBio. 2017 Nov 7;8(6): [PMID: 29114028]
  88. J Virol. 2018 Sep 12;92(19): [PMID: 29997210]
  89. J Virol. 2003 Mar;77(6):3680-9 [PMID: 12610143]
  90. mBio. 2018 Jul 17;9(4): [PMID: 30018111]
  91. J Virol. 1996 Mar;70(3):1759-67 [PMID: 8627698]
  92. Nature. 2015 Jul 9;523(7559):231-5 [PMID: 25970248]
  93. Virology. 2012 Mar 1;424(1):11-7 [PMID: 22222212]
  94. Nature. 2009 Sep 24;461(7263):520-3 [PMID: 19710653]
  95. Nat Commun. 2015 May 20;6:7126 [PMID: 25989971]
  96. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7571-6 [PMID: 15897453]
  97. Cell Syst. 2018 Dec 26;7(6):627-642.e6 [PMID: 30471916]
  98. Cell Rep. 2017 Nov 7;21(6):1692-1704 [PMID: 29117571]
  99. Nat Commun. 2018 Nov 28;9(1):5037 [PMID: 30487586]
  100. Dermatol Clin. 2019 Jan;37(1):73-82 [PMID: 30466690]
  101. Virology. 2008 May 10;374(2):487-94 [PMID: 18279905]
  102. Mol Cell Proteomics. 2017 Dec;16(12):2079-2097 [PMID: 28972080]

Grants

  1. P30 DK042086/NIDDK NIH HHS
  2. post-doctoral fellowship/Human Frontier Science Program

MeSH Term

Animals
Antiviral Agents
Cell Cycle
Cell Line
Cell Nucleus
Gene Expression Regulation, Viral
Herpes Simplex
Herpesvirus 1, Human
Humans
Mutation
Signal Transduction
Single-Cell Analysis
Transcription, Genetic
Virus Replication
beta Catenin

Chemicals

Antiviral Agents
beta Catenin