A single-cell transcriptomic atlas of the developing chicken limb.

Christian Feregrino, Fabio Sacher, Oren Parnas, Patrick Tschopp
Author Information
  1. Christian Feregrino: DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
  2. Fabio Sacher: DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
  3. Oren Parnas: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
  4. Patrick Tschopp: DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland. patrick.tschopp@unibas.ch. ORCID

Abstract

BACKGROUND: Through precise implementation of distinct cell type specification programs, differentially regulated in both space and time, complex patterns emerge during organogenesis. Thanks to its easy experimental accessibility, the developing chicken limb has long served as a paradigm to study vertebrate pattern formation. Through decades' worth of research, we now have a firm grasp on the molecular mechanisms driving limb formation at the tissue-level. However, to elucidate the dynamic interplay between transcriptional cell type specification programs and pattern formation at its relevant cellular scale, we lack appropriately resolved molecular data at the genome-wide level. Here, making use of droplet-based single-cell RNA-sequencing, we catalogue the developmental emergence of distinct tissue types and their transcriptome dynamics in the distal chicken limb, the so-called autopod, at cellular resolution.
RESULTS: Using single-cell RNA-sequencing technology, we sequenced a total of 17,628 cells coming from three key developmental stages of chicken autopod patterning. Overall, we identified 23 cell populations with distinct transcriptional profiles. Amongst them were small, albeit essential populations like the apical ectodermal ridge, demonstrating the ability to detect even rare cell types. Moreover, we uncovered the existence of molecularly distinct sub-populations within previously defined compartments of the developing limb, some of which have important signaling functions during autopod pattern formation. Finally, we inferred gene co-expression modules that coincide with distinct tissue types across developmental time, and used them to track patterning-relevant cell populations of the forming digits.
CONCLUSIONS: We provide a comprehensive functional genomics resource to study the molecular effectors of chicken limb patterning at cellular resolution. Our single-cell transcriptomic atlas captures all major cell populations of the developing autopod, and highlights the transcriptional complexity in many of its components. Finally, integrating our data-set with other single-cell transcriptomics resources will enable researchers to assess molecular similarities in orthologous cell types across the major tetrapod clades, and provide an extensive candidate gene list to functionally test cell-type-specific drivers of limb morphological diversification.

Keywords

References

  1. Annu Rev Cell Dev Biol. 2017 Oct 6;33:537-553 [PMID: 28813177]
  2. Gene Expr Patterns. 2009 Apr;9(4):215-23 [PMID: 19185060]
  3. Development. 2015 Mar 1;142(5):817-31 [PMID: 25715393]
  4. Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713): [PMID: 27994118]
  5. Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14665-70 [PMID: 16203988]
  6. Nature. 2014 Jul 3;511(7507):46-51 [PMID: 24990743]
  7. Anat Embryol (Berl). 1981;161(3):283-9 [PMID: 7187823]
  8. Dev Cell. 2005 Oct;9(4):449-62 [PMID: 16198288]
  9. Dev Dyn. 2011 May;240(5):931-42 [PMID: 21445961]
  10. Genesis. 2012 Oct;50(10):741-9 [PMID: 22610508]
  11. Nat Protoc. 2009;4(8):1184-91 [PMID: 19617889]
  12. Cold Spring Harb Perspect Biol. 2012 Aug 01;4(8):a005975 [PMID: 22855721]
  13. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  14. Methods Mol Biol. 2000;132:365-86 [PMID: 10547847]
  15. Science. 2000 Jul 21;289(5478):438-41 [PMID: 10903202]
  16. Dev Cell. 2017 Jun 5;41(5):459-465 [PMID: 28586643]
  17. Nature. 2002 Sep 19;419(6904):304-8 [PMID: 12239569]
  18. Cell. 1993 Dec 31;75(7):1401-16 [PMID: 8269518]
  19. Nat Commun. 2019 Jul 19;10(1):3244 [PMID: 31324809]
  20. Mol Biosyst. 2017 Jun 27;13(7):1280-1290 [PMID: 28573295]
  21. J Embryol Exp Morphol. 1977 Oct;41:245-58 [PMID: 591873]
  22. Nat Commun. 2016 Oct 07;7:12903 [PMID: 27713395]
  23. Cell. 2001 Feb 9;104(3):341-51 [PMID: 11239392]
  24. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  25. Methods Mol Biol. 2011;770:259-92 [PMID: 21805268]
  26. Nat Rev Mol Cell Biol. 2002 Mar;3(3):155-66 [PMID: 11994736]
  27. Dev Biol. 2007 Nov 1;311(1):124-35 [PMID: 17904116]
  28. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4185-90 [PMID: 18334652]
  29. Science. 2018 Oct 26;362(6413): [PMID: 30262634]
  30. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14211-6 [PMID: 20660756]
  31. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  32. Front Genet. 2015 Sep 23;6:297 [PMID: 26442113]
  33. Nat Rev Genet. 2017 Apr;18(4):245-258 [PMID: 28163321]
  34. Dev Biol. 1999 Apr 1;208(1):30-43 [PMID: 10075839]
  35. Wiley Interdiscip Rev Dev Biol. 2012 Nov-Dec;1(6):803-22 [PMID: 23799625]
  36. Semin Cell Dev Biol. 2014 Aug;32:119-27 [PMID: 24718318]
  37. Genesis. 2002 Jun;33(2):77-80 [PMID: 12112875]
  38. Nature. 2011 Sep 04;477(7366):583-6 [PMID: 21892187]
  39. Dev Biol. 2007 Oct 15;310(2):388-400 [PMID: 17888899]
  40. Nat Rev Genet. 2016 Nov;17(11):693-703 [PMID: 27616569]
  41. Nature. 2013 Aug 22;500(7463):445-8 [PMID: 23831646]
  42. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  43. BMC Biol. 2018 Sep 18;16(1):101 [PMID: 30223853]
  44. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6581-6 [PMID: 16618938]
  45. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  46. Cell. 2016 Aug 25;166(5):1308-1323.e30 [PMID: 27565351]
  47. Nat Rev Genet. 2009 Dec;10(12):845-58 [PMID: 19920852]
  48. F1000Res. 2016 Aug 31;5:2122 [PMID: 27909575]
  49. Int J Dev Biol. 2002;46(7):871-6 [PMID: 12455623]
  50. Anat Embryol (Berl). 1977 Mar 30;150(2):171-86 [PMID: 857700]
  51. Dev Dyn. 1996 Nov;207(3):235-52 [PMID: 8922523]
  52. J Anat. 2004 Mar;204(Pt 3):151-63 [PMID: 15032905]
  53. Methods. 2015 Sep 1;85:54-61 [PMID: 26142758]
  54. Curr Biol. 2003 Oct 14;13(20):1830-6 [PMID: 14561411]
  55. Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761 [PMID: 29155950]
  56. Curr Biol. 2010 Nov 23;20(22):1993-2002 [PMID: 21055947]
  57. Dev Biol. 2008 Sep 15;321(2):343-56 [PMID: 18602912]
  58. Dev Dyn. 2011 May;240(5):1142-50 [PMID: 21360789]
  59. Nature. 2018 May;557(7706):564-569 [PMID: 29769720]
  60. Nature. 2019 Feb;566(7745):496-502 [PMID: 30787437]
  61. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  62. Int J Dev Biol. 2009;53(8-10):1495-502 [PMID: 19247943]
  63. Nature. 2014 Jul 3;511(7507):41-5 [PMID: 24990742]
  64. Front Genet. 2018 Nov 29;9:591 [PMID: 30555516]
  65. Dev Dyn. 2011 May;240(5):990-1004 [PMID: 21337664]
  66. Nature. 1987 Apr 2-8;326(6112):515-7 [PMID: 2882423]
  67. Dev Biol. 2015 Nov 1;407(1):75-89 [PMID: 26277217]
  68. Nat Rev Genet. 2016 Dec;17(12):744-757 [PMID: 27818507]
  69. Dev Biol. 2008 Sep 1;321(1):162-74 [PMID: 18602913]
  70. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  71. Nat Commun. 2018 Sep 7;9(1):3634 [PMID: 30194383]
  72. Development. 1992 Aug;115(4):1087-101 [PMID: 1360403]
  73. Development. 1997 May;124(9):1821-9 [PMID: 9165129]

Grants

  1. 31003A_170022/Schweizerischer Nationalfonds zur F��rderung der Wissenschaftlichen Forschung
  2. DUW/Universit��t Basel

MeSH Term

Animals
Body Patterning
Chickens
Extremities
Gene Expression Regulation, Developmental
Organogenesis
Signal Transduction
Single-Cell Analysis
Transcription Factors
Transcriptome

Chemicals

Transcription Factors