mRNA Delivery for Therapeutic Anti-HER2 Antibody Expression In Vivo.

Yulia Rybakova, Piotr S Kowalski, Yuxuan Huang, John T Gonzalez, Michael W Heartlein, Frank DeRosa, Derfogail Delcassian, Daniel G Anderson
Author Information
  1. Yulia Rybakova: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
  2. Piotr S Kowalski: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
  3. Yuxuan Huang: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
  4. John T Gonzalez: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
  5. Michael W Heartlein: Translate Bio, Lexington, MA 02421, USA.
  6. Frank DeRosa: Translate Bio, Lexington, MA 02421, USA.
  7. Derfogail Delcassian: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
  8. Daniel G Anderson: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address: dgander@mit.edu.

Abstract

Antibody-based drugs are a leading class of biologics used to treat a variety of diseases, including cancer. However, wide antibody implementation is hindered by manufacturing challenges and high production cost. Use of in-vitro-transcribed mRNA (IVT-mRNA) for endogenous protein expression has the potential to circumvent many of the shortcomings of antibody production and therapeutic application. Here, we describe the development of an IVT-mRNA system for in vivo delivery of a humanized anti-HER2 (also known as ERBB2) antibody, trastuzumab, and demonstrate its anticancer activity. We engineered the IVT-mRNA sequence to maximize expression, then formulated the IVT-mRNA into lipid-based nanoparticles (LNPs) to protect the mRNA from degradation and enable efficient in vivo delivery. Systemic delivery of the optimized IVT-mRNA loaded into LNPs resulted in antibody serum concentrations of 45 ± 8.6 μg/mL for 14 days after LNP injection. Further studies demonstrated an improved pharmacokinetic profile of the produced protein compared to injection of trastuzumab protein. Finally, treatment of tumor-bearing mice with trastuzumab IVT-mRNA LNPs selectively reduced the volume of HER2-positive tumors and improved animal survival. Taken together, the results of our study demonstrate that using IVT-mRNA LNPs to express full-size therapeutic antibodies in the liver can provide an effective strategy for cancer treatment and offers an alternative to protein administration.

Keywords

References

Ann Med. 2009;41(5):322-31 [PMID: 19234897]
Appl Microbiol Biotechnol. 2016 Apr;100(8):3451-61 [PMID: 26936774]
Mol Ther. 2018 Jun 6;26(6):1509-1519 [PMID: 29653760]
EMBO Mol Med. 2017 Oct;9(10):1434-1447 [PMID: 28794134]
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3889-94 [PMID: 12660367]
N Engl J Med. 2007 Jul 5;357(1):39-51 [PMID: 17611206]
J Biotechnol. 2007 Mar 10;128(4):705-15 [PMID: 17316861]
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1941-E1950 [PMID: 28202722]
Immunity. 2005 Aug;23(2):165-75 [PMID: 16111635]
Gene Ther. 2016 Oct;23(10):699-707 [PMID: 27356951]
Nat Biotechnol. 2015 Jun;33(6):584-6 [PMID: 25985262]
Science. 2018 Mar 23;359(6382):1355-1360 [PMID: 29567706]
Nat Med. 2000 Apr;6(4):443-6 [PMID: 10742152]
J Transl Med. 2019 Feb 22;17(1):54 [PMID: 30795778]
Br J Cancer. 2009 Mar 24;100(6):865-9 [PMID: 19240721]
Nat Med. 2017 Jul;23(7):815-817 [PMID: 28604701]
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):3955-60 [PMID: 24516150]
Gene Ther. 2017 Mar;24(3):133-143 [PMID: 28094775]
Biomaterials. 2016 Dec;109:78-87 [PMID: 27680591]
Nat Rev Drug Discov. 2018 Oct;17(10):751-767 [PMID: 30190565]
Nucleic Acids Res. 1998 Jul 1;26(13):3208-14 [PMID: 9628920]
Adv Mater. 2018 Jul 5;:e1801151 [PMID: 29975801]
J Cancer. 2017 Sep 12;8(16):3131-3141 [PMID: 29158785]
Nature. 2012 Oct 4;490(7418):61-70 [PMID: 23000897]
J Biol Chem. 2004 Mar 26;279(13):12542-50 [PMID: 14729660]
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):042903 [PMID: 21599226]
Adv Mater. 2017 Sep;29(33): [PMID: 28681930]
Nat Rev Drug Discov. 2014 Oct;13(10):759-80 [PMID: 25233993]
Nat Rev Genet. 2014 Aug;15(8):541-55 [PMID: 25022906]
J Control Release. 2016 Oct 28;240:227-234 [PMID: 26718856]
Biotechnol Bioeng. 2009 Mar 1;102(4):1182-96 [PMID: 18979540]
Mol Cell Biol. 1989 Mar;9(3):1165-72 [PMID: 2566907]
Nat Commun. 2018 Oct 1;9(1):3999 [PMID: 30275522]
Oncogene. 1993 Apr;8(4):849-54 [PMID: 8096075]
Nat Rev Drug Discov. 2018 Mar 28;17(4):232 [PMID: 29588516]
Proc Natl Acad Sci U S A. 1992 May 15;89(10):4285-9 [PMID: 1350088]
Blood. 2006 Dec 15;108(13):4009-17 [PMID: 16940422]
MAbs. 2010 Sep-Oct;2(5):466-79 [PMID: 20622510]
Breast Cancer Res. 2011 Aug 12;13(4):215 [PMID: 21884641]
Cancers (Basel). 2011 Oct 13;3(4):3856-93 [PMID: 24213115]
J Control Release. 2015 Nov 10;217:337-44 [PMID: 26342664]
Nat Mater. 2013 Nov;12(11):967-77 [PMID: 24150415]
Mol Ther. 2019 Apr 10;27(4):710-728 [PMID: 30846391]
Bioconjug Chem. 2016 Mar 16;27(3):849-53 [PMID: 26906521]
Nat Biotechnol. 2013 Oct;31(10):898-907 [PMID: 24013197]
Clin Ther. 1999 Feb;21(2):309-18 [PMID: 10211534]
PLoS One. 2015 Feb 23;10(2):e0116878 [PMID: 25706993]
Pharmaceutics. 2018 Jul 04;10(3): [PMID: 29973504]
Nat Commun. 2017 Mar 02;8:14630 [PMID: 28251988]
Ann Oncol. 2001;12 Suppl 1:S43-7 [PMID: 11521721]
Acta Biochim Biophys Sin (Shanghai). 2016 Apr;48(4):391-4 [PMID: 26922322]
Nano Lett. 2015 Nov 11;15(11):7300-6 [PMID: 26469188]
Breast Cancer (Auckl). 2010 May 20;4:35-41 [PMID: 20697531]

Grants

  1. P30 CA014051/NCI NIH HHS

MeSH Term

Animals
Antibodies, Monoclonal
Breast Neoplasms
Disease Models, Animal
Drug Delivery Systems
Gene Expression
Gene Transfer Techniques
Genetic Therapy
Humans
Lipids
Mice
Molecular Targeted Therapy
Nanoparticles
RNA, Messenger
Receptor, ErbB-2
Trastuzumab
Xenograft Model Antitumor Assays

Chemicals

Antibodies, Monoclonal
Lipids
RNA, Messenger
ERBB2 protein, human
Receptor, ErbB-2
Trastuzumab