Visualizing electrostatic gating effects in two-dimensional heterostructures.

Paul V Nguyen, Natalie C Teutsch, Nathan P Wilson, Joshua Kahn, Xue Xia, Abigail J Graham, Viktor Kandyba, Alessio Giampietri, Alexei Barinov, Gabriel C Constantinescu, Nelson Yeung, Nicholas D M Hine, Xiaodong Xu, David H Cobden, Neil R Wilson
Author Information
  1. Paul V Nguyen: Department of Physics, University of Washington, Seattle, WA, USA.
  2. Natalie C Teutsch: Department of Physics, University of Warwick, Coventry, UK.
  3. Nathan P Wilson: Department of Physics, University of Washington, Seattle, WA, USA.
  4. Joshua Kahn: Department of Physics, University of Washington, Seattle, WA, USA.
  5. Xue Xia: Department of Physics, University of Warwick, Coventry, UK.
  6. Abigail J Graham: Department of Physics, University of Warwick, Coventry, UK.
  7. Viktor Kandyba: Elettra-Sincrotrone Trieste SCpA, Basovizza, Italy.
  8. Alessio Giampietri: Elettra-Sincrotrone Trieste SCpA, Basovizza, Italy.
  9. Alexei Barinov: Elettra-Sincrotrone Trieste SCpA, Basovizza, Italy.
  10. Gabriel C Constantinescu: Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
  11. Nelson Yeung: Department of Physics, University of Warwick, Coventry, UK.
  12. Nicholas D M Hine: Department of Physics, University of Warwick, Coventry, UK.
  13. Xiaodong Xu: Department of Physics, University of Washington, Seattle, WA, USA. xuxd@uw.edu.
  14. David H Cobden: Department of Physics, University of Washington, Seattle, WA, USA. cobden@uw.edu.
  15. Neil R Wilson: Department of Physics, University of Warwick, Coventry, UK. neil.wilson@warwick.ac.uk.

Abstract

The ability to directly monitor the states of electrons in modern field-effect devices-for example, imaging local changes in the electrical potential, Fermi level and band structure as a gate voltage is applied-could transform our understanding of the physics and function of a device. Here we show that micrometre-scale, angle-resolved photoemission spectroscopy (microARPES) applied to two-dimensional van der Waals heterostructures affords this ability. In two-terminal graphene devices, we observe a shift of the Fermi level across the Dirac point, with no detectable change in the dispersion, as a gate voltage is applied. In two-dimensional semiconductor devices, we see the conduction-band edge appear as electrons accumulate, thereby firmly establishing the energy and momentum of the edge. In the case of monolayer tungsten diselenide, we observe that the bandgap is renormalized downwards by several hundreds of millielectronvolts-approaching the exciton energy-as the electrostatic doping increases. Both optical spectroscopy and microARPES can be carried out on a single device, allowing definitive studies of the relationship between gate-controlled electronic and optical properties. The technique provides a powerful way to study not only fundamental semiconductor physics, but also intriguing phenomena such as topological transitions and many-body spectral reconstructions under electrical control.

References

Dudin, P. et al. Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the Spectromicroscopy-3.2L beamline of Elettra. J. Synchrotron Radiat. 17, 445–450 (2010). [DOI: 10.1107/S0909049510013993]
Rotenberg, E. & Bostwick, A. MicroARPES and nanoARPES at diffraction-limited light sources: opportunities and performance gains. J. Synchrotron Radiat. 21, 1048–1056 (2014). [DOI: 10.1107/S1600577514015409]
Iwasawa, H. et al. Buried double CuO chains in YBaCuO uncovered by nano-ARPES. J. Phys. Condens. Matter 4, 9015–9022 (2019).
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016). [DOI: 10.1126/science.aac9439]
Tong, Q. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2017). [DOI: 10.1038/nphys3968]
Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 3, 36–40 (2007). [DOI: 10.1038/nphys477]
Riley, J. M. et al. Negative electronic compressibility and tunable spin splitting in WSe. Nat. Nanotechnol. 10, 1043–1047 (2015). [DOI: 10.1038/nnano.2015.217]
Zhang, Y. et al. Electronic structure, surface doping, and optical response in epitaxial WSe thin films. Nano Lett. 16, 2485–2491 (2016). [DOI: 10.1021/acs.nanolett.6b00059]
Kim, J. et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015). [DOI: 10.1126/science.aaa6486]
Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe. Nat. Phys. 13, 683–687 (2017). [DOI: 10.1038/nphys4174]
Koch, R. J. et al. Nano focusing of soft X-rays by a new capillary mirror optic. Synchrotron Radiat. News 31, 50–52 (2018). [DOI: 10.1080/08940886.2018.1483660]
Zhang, H. et al. Resolving deep quantum-well states in atomically thin 2H-MoTe flakes by nanospot angle-resolved photoemission spectroscopy. Nano Lett. 18, 4664–4668 (2018). [DOI: 10.1021/acs.nanolett.8b00589]
Katoch, J. et al. Giant spin-splitting and gap renormalization driven by trions in single-layer WS/h-BN heterostructures. Nat. Phys. 14, 355–359 (2018). [DOI: 10.1038/s41567-017-0033-4]
Cucchi, I. et al. Microfocus laser-angle-resolved photoemission on encapsulated mono-, bi-, and few-layer 1T′-WTe. Nano Lett. 19, 554–560 (2019). [DOI: 10.1021/acs.nanolett.8b04534]
Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017). [DOI: 10.1126/sciadv.1601832]
Jin, W. et al. Tuning the electronic structure of monolayer graphene/MoS van der Waals heterostructures via interlayer twist. Phys. Rev. B 92, 201409 (2015). [DOI: 10.1103/PhysRevB.92.201409]
Pierucci, D. et al. Band alignment and minigaps in monolayer MoS-graphene van der Waals heterostructures. Nano Lett. 16, 4054–4061 (2016). [DOI: 10.1021/acs.nanolett.6b00609]
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). [DOI: 10.1038/natrevmats.2016.42]
Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016). [DOI: 10.1038/natrevmats.2016.55]
Yankowitz, M., McKenzie, D. & LeRoy, B. J. Local spectroscopic characterization of spin and layer polarization in WSe. Phys. Rev. Lett. 115, 136803 (2015). [DOI: 10.1103/PhysRevLett.115.136803]
Zhang, C. et al. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe. Nano Lett. 15, 6494–6500 (2015). [DOI: 10.1021/acs.nanolett.5b01968]
He, K. et al. Tightly bound excitons in monolayer WSe. Phys. Rev. Lett. 113, 026803 (2014). [DOI: 10.1103/PhysRevLett.113.026803]
Park, S. et al. Direct determination of monolayer MoS and WSe exciton binding energies on insulating and metallic substrates. 2D Mater. 5, 025003 (2018). [DOI: 10.1088/2053-1583/aaa4ca]
Stier, A. V. et al. Magnetooptics of exciton Rydberg states in a monolayer semiconductor. Phys. Rev. Lett. 120, 057405 (2018). [DOI: 10.1103/PhysRevLett.120.057405]
Zhao, W., Ribeiro, R. M. & Eda, G. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc. Chem. Res. 48, 91–99 (2015). [DOI: 10.1021/ar500303m]
Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011). [DOI: 10.1021/nl200758b]
Liu, G., Xiao, D., Yao, Y., Xu, X. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015). [DOI: 10.1039/C4CS00301B]
Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014). [DOI: 10.1038/nmat4061]
Gao, S., Liang, Y., Spataru, C. D. & Yang, L. Dynamical excitonic effects in doped two-dimensional semiconductors. Nano Lett. 16, 5568–5573 (2016). [DOI: 10.1021/acs.nanolett.6b02118]
Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017). [DOI: 10.1038/ncomms15251]
Gao, S. & Yang, L. Renormalization of the quasiparticle band gap in doped two-dimensional materials from many-body calculations. Phys. Rev. B 96, 155410 (2017). [DOI: 10.1103/PhysRevB.96.155410]
Cao, Y. et al. Magic-angle graphene superlattices: a new platform for unconventional superconductivity. Nature 556, 43–50 (2018). [DOI: 10.1038/nature26160]
Wang, H., Fan, F., Zhu, S. & Wu, H. Doping enhanced ferromagnetism and induced half-metallicity in CrI monolayer. EPL 114, 47001 (2016). [DOI: 10.1209/0295-5075/114/47001]
Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & Van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014). [DOI: 10.1063/1.4886096]
Fang, T., Konar, A., Xing, H. & Jena, D. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91, 092109 (2007). [DOI: 10.1063/1.2776887]
Yu, G. L. et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl Acad. Sci. USA 110, 3282–3286 (2013). [DOI: 10.1073/pnas.1300599110]
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). [DOI: 10.1038/nnano.2010.172]
Kim, K. K. et al. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583–8590 (2012). [DOI: 10.1021/nn301675f]
Mucha-Kruczyński, M. et al. Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission. Phys. Rev. B 77, 195403 (2008). [DOI: 10.1103/PhysRevB.77.195403]
Kormányos, A. et al. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 022001 (2015). [DOI: 10.1088/2053-1583/2/2/022001]
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). [DOI: 10.1088/0953-8984/21/39/395502]
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013). [DOI: 10.1103/PhysRevB.88.085117]
van Setten, M. J. et al. The PSEUDODOJO: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018). [DOI: 10.1016/j.cpc.2018.01.012]
Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009). [DOI: 10.1016/j.cpc.2009.02.003]
Godby, R. W. & Needs, R. J. Metal-insulator transition in Kohn-Sham theory and quasiparticle theory. Phys. Rev. Lett. 62, 1169–1172 (1989). [DOI: 10.1103/PhysRevLett.62.1169]
Castro, A., Räsänen, E. & Rozzi, C. A. Exact Coulomb cutoff technique for supercell calculations in two dimensions. Phys. Rev. B 80, 033102 (2009). [DOI: 10.1103/PhysRevB.80.033102]

Word Cloud

Similar Articles

Cited By