Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells.

Noa Bossel Ben-Moshe, Shelly Hen-Avivi, Natalia Levitin, Dror Yehezkel, Marije Oosting, Leo A B Joosten, Mihai G Netea, Roi Avraham
Author Information
  1. Noa Bossel Ben-Moshe: Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel.
  2. Shelly Hen-Avivi: Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel.
  3. Natalia Levitin: Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel.
  4. Dror Yehezkel: Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel.
  5. Marije Oosting: Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525, HP, Nijmegen, the Netherlands.
  6. Leo A B Joosten: Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525, HP, Nijmegen, the Netherlands. ORCID
  7. Mihai G Netea: Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525, HP, Nijmegen, the Netherlands. ORCID
  8. Roi Avraham: Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel. roi.avraham@weizmann.ac.il.

Abstract

Complex interactions between different host immune cell types can determine the outcome of pathogen infections. Advances in single cell RNA-sequencing (scRNA-seq) allow probing of these immune interactions, such as cell-type compositions, which are then interpreted by deconvolution algorithms using bulk RNA-seq measurements. However, not all aspects of immune surveillance are represented by current algorithms. Here, using scRNA-seq of human peripheral blood cells infected with Salmonella, we develop a deconvolution algorithm for inferring cell-type specific infection responses from bulk measurements. We apply our dynamic deconvolution algorithm to a cohort of healthy individuals challenged ex vivo with Salmonella, and to three cohorts of tuberculosis patients during different stages of disease. We reveal cell-type specific immune responses associated not only with ex vivo infection phenotype but also with clinical disease stage. We propose that our approach provides a predictive power to identify risk for disease, and human infection outcomes.

References

  1. PLoS One. 2010 Oct 29;5(10):e13772 [PMID: 21048937]
  2. Bioinformatics. 2016 Dec 15;32(24):3842-3843 [PMID: 27531105]
  3. Nat Rev Immunol. 2008 Dec;8(12):958-69 [PMID: 19029990]
  4. Clin Immunol. 2015 Dec;161(2):260-9 [PMID: 26319414]
  5. PLoS One. 2013 Aug 05;8(8):e70630 [PMID: 23940611]
  6. Nat Rev Immunol. 2012 Feb 17;12(3):191-200 [PMID: 22343568]
  7. Cell. 2017 Dec 14;171(7):1611-1624.e24 [PMID: 29198524]
  8. Nat Cell Biol. 2018 Jul;20(7):836-846 [PMID: 29915358]
  9. Front Microbiol. 2012 Feb 03;3:23 [PMID: 22347216]
  10. Bioinformatics. 2005 May 15;21(10):2301-8 [PMID: 15722375]
  11. Nat Rev Immunol. 2017 Jan;17(1):21-29 [PMID: 27916977]
  12. Science. 2017 Jun 9;356(6342): [PMID: 28473638]
  13. Nat Rev Immunol. 2011 Oct 10;11(11):762-74 [PMID: 21984070]
  14. Nature. 2014 Jun 19;510(7505):363-9 [PMID: 24919153]
  15. FEMS Immunol Med Microbiol. 2008 Jul;53(2):151-65 [PMID: 18462388]
  16. Science. 2015 Mar 6;347(6226):1138-42 [PMID: 25700174]
  17. J Exp Med. 2006 Jun 12;203(6):1407-12 [PMID: 16717117]
  18. Nat Methods. 2019 Apr;16(4):327-332 [PMID: 30886410]
  19. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  20. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7118-27 [PMID: 26621739]
  21. Autophagy. 2013 Jul;9(7):985-95 [PMID: 23584039]
  22. Curr Opin Microbiol. 2018 Apr;42:31-39 [PMID: 29049916]
  23. Cell. 2015 Sep 10;162(6):1309-21 [PMID: 26343579]
  24. Genome Biol. 2017 Oct 27;18(1):200 [PMID: 29073931]
  25. Nat Commun. 2017 Dec 11;8(1):2032 [PMID: 29230012]
  26. Nature. 2010 Aug 19;466(7309):973-7 [PMID: 20725040]
  27. Nat Commun. 2018 Jun 19;9(1):2308 [PMID: 29921861]
  28. PLoS One. 2010 Nov 23;5(11):e15007 [PMID: 21124900]
  29. Gut Microbes. 2012 Mar-Apr;3(2):62-70 [PMID: 22198618]
  30. Nat Methods. 2015 May;12(5):453-7 [PMID: 25822800]
  31. Science. 2017 Apr 21;356(6335): [PMID: 28428369]
  32. Clin Microbiol Rev. 2015 Jul;28(3):603-61 [PMID: 26016486]
  33. Front Physiol. 2018 Feb 20;9:113 [PMID: 29515456]
  34. Am J Respir Crit Care Med. 2018 May 1;197(9):1198-1208 [PMID: 29624071]
  35. Med Microbiol Immunol. 2016 Aug;205(4):321-32 [PMID: 26895635]
  36. Mol Aspects Med. 2018 Feb;59:114-122 [PMID: 28712804]
  37. Mediators Inflamm. 2013;2013:828354 [PMID: 24453429]
  38. Tuberculosis (Edinb). 2017 Dec;107:48-58 [PMID: 29050771]
  39. Science. 2010 Jun 25;328(5986):1703-5 [PMID: 20508090]
  40. Ocul Surf. 2014 Apr;12(2):87-99 [PMID: 24725321]
  41. Science. 2014 Jun 20;344(6190):1396-401 [PMID: 24925914]
  42. Infect Immun. 2006 Aug;74(8):4922-6 [PMID: 16861683]
  43. Nat Rev Immunol. 2011 Oct 14;11(11):723-37 [PMID: 21997792]
  44. J Immunol. 2003 Dec 15;171(12):6742-9 [PMID: 14662878]
  45. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  46. Front Neurosci. 2013 Mar 18;7:33 [PMID: 23515576]
  47. Cell. 2015 Dec 17;163(7):1663-77 [PMID: 26627738]
  48. Nat Microbiol. 2016 Nov 14;2:16206 [PMID: 27841856]
  49. Infect Immun. 2005 Oct;73(10):7027-31 [PMID: 16177386]
  50. Cell. 2011 Mar 4;144(5):675-88 [PMID: 21376231]
  51. Nat Immunol. 2012 Oct;13(10):954-62 [PMID: 22922364]
  52. Appl Immunohistochem Mol Morphol. 2001 Jun;9(2):97-106 [PMID: 11396639]
  53. Nucleic Acids Res. 2009 Jan;37(1):1-13 [PMID: 19033363]
  54. Nature. 2013 Jun 13;498(7453):236-40 [PMID: 23685454]
  55. Cell. 2016 Nov 3;167(4):1099-1110.e14 [PMID: 27814507]
  56. Science. 2013 Sep 13;341(6151):1250-3 [PMID: 24031018]
  57. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4478-84 [PMID: 25288745]
  58. Science. 2018 Apr 20;360(6386):331-335 [PMID: 29674595]
  59. Immunology. 2012 Jul;136(3):273-82 [PMID: 22671023]
  60. Lancet. 2016 Jun 4;387(10035):2312-2322 [PMID: 27017310]
  61. Genome Biol. 2016 Apr 28;17:77 [PMID: 27121950]
  62. Oncotarget. 2016 Aug 23;7(34):55222-55230 [PMID: 27409423]
  63. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  64. Nat Rev Genet. 2019 May;20(5):273-282 [PMID: 30617341]
  65. Cancers (Basel). 2016 Mar 15;8(3): [PMID: 26999211]
  66. Cell Host Microbe. 2009 Sep 17;6(3):207-17 [PMID: 19664979]
  67. Cell. 2011 Nov 11;147(4):868-80 [PMID: 22078883]
  68. Front Immunol. 2013 Jul 15;4:195 [PMID: 23874341]
  69. Front Immunol. 2018 Jul 30;9:1726 [PMID: 30105020]

MeSH Term

Algorithms
Cells, Cultured
Cluster Analysis
Cohort Studies
Gene Expression Profiling
High-Throughput Nucleotide Sequencing
Host-Pathogen Interactions
Humans
Immune System
Natural Killer T-Cells
Predictive Value of Tests
Salmonella
Salmonella Infections
Sequence Analysis, RNA
Single-Cell Analysis