Saskia Heybrock, Kristiina Kanerva, Ying Meng, Chris Ing, Anna Liang, Zi-Jian Xiong, Xialian Weng, Young Ah Kim, Richard Collins, William Trimble, Régis Pomès, Gilbert G Privé, Wim Annaert, Michael Schwake, Joerg Heeren, Renate Lüllmann-Rauch, Sergio Grinstein, Elina Ikonen, Paul Saftig, Dante Neculai
The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterollike inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
[PMID:
8744570]
Nat Methods. 2014 Jan;11(1):47-50
[PMID:
24270602]
Biochim Biophys Acta. 1974 Feb 26;339(1):57-70
[PMID:
4546885]
Physiol Rev. 2006 Oct;86(4):1237-61
[PMID:
17015489]
Nat Med. 2009 Jul;15(7):798-801
[PMID:
19543282]
Cell. 2018 Oct 4;175(2):514-529.e20
[PMID:
30220461]
J Cell Mol Med. 2011 Feb;15(2):280-95
[PMID:
19929948]
Hum Mol Genet. 2013 Mar 15;22(6):1157-66
[PMID:
23250914]
Cell. 2007 Nov 16;131(4):770-83
[PMID:
18022370]
J Histochem Cytochem. 1995 Oct;43(10):1071-8
[PMID:
7560885]
Nat Rev Mol Cell Biol. 2008 Feb;9(2):125-38
[PMID:
18216769]
Traffic. 2017 Apr;18(4):209-217
[PMID:
28191915]
Dev Cell. 2013 Nov 11;27(3):249-62
[PMID:
24209575]
J Comput Chem. 2004 Oct;25(13):1605-12
[PMID:
15264254]
J Mol Biol. 1993 Dec 5;234(3):779-815
[PMID:
8254673]
Hum Mol Genet. 2003 Mar 15;12(6):631-46
[PMID:
12620969]
Annu Rev Biochem. 2018 Jun 20;87:783-807
[PMID:
28841344]
Bioinformatics. 2013 Apr 1;29(7):845-54
[PMID:
23407358]
Annu Rev Cell Dev Biol. 2005;21:81-103
[PMID:
16212488]
Methods Enzymol. 1983;98:241-60
[PMID:
6321901]
Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697
[PMID:
9895674]
Curr Biol. 2015 Jun 1;25(11):R470-81
[PMID:
26035793]
J Biol Chem. 2000 Dec 8;275(49):38445-51
[PMID:
10964915]
Nat Commun. 2017 Mar 31;8:14858
[PMID:
28361956]
Nat Commun. 2016 Jun 15;7:11866
[PMID:
27302750]
Biochim Biophys Acta. 2004 Oct 11;1685(1-3):83-7
[PMID:
15465429]
J Biol Chem. 2016 Apr 15;291(16):8414-27
[PMID:
26907692]
Cell. 1997 May 2;89(3):331-40
[PMID:
9150132]
Cell. 2015 Apr 9;161(2):291-306
[PMID:
25860611]
Anal Chem. 2015 Apr 21;87(8):4402-8
[PMID:
25803566]
J Chem Theory Comput. 2008 Jan;4(1):116-22
[PMID:
26619985]
J Lipid Res. 2016 Mar;57(3):451-63
[PMID:
26724485]
J Comput Chem. 2010 Jan 30;31(2):455-61
[PMID:
19499576]
Biochem Cell Biol. 2016 Dec;94(6):499-506
[PMID:
27421092]
Biochim Biophys Acta. 2014 May;1841(5):799-810
[PMID:
24184515]
Trends Cell Biol. 2017 Nov;27(11):833-850
[PMID:
28838620]
Cell. 2017 Nov 16;171(5):1094-1109.e15
[PMID:
29149604]
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2908-12
[PMID:
22308394]
Nat Rev Immunol. 2013 Sep;13(9):621-34
[PMID:
23928573]
Nat Chem Biol. 2015 Oct;11(10):799-806
[PMID:
26280656]
Nat Commun. 2017 Dec 4;8(1):1908
[PMID:
29199275]
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):3791-6
[PMID:
27001828]
J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273
[PMID:
23341755]
J Biol Chem. 1999 Jul 16;274(29):20344-50
[PMID:
10400657]
Nature. 2013 Dec 5;504(7478):172-6
[PMID:
24162852]
Traffic. 2016 Sep;17(9):1054-7
[PMID:
27187581]
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5004-9
[PMID:
23476064]
Traffic. 2012 Sep;13(9):1234-43
[PMID:
22607065]
Sci Rep. 2017 Jan 30;7:41408
[PMID:
28134274]