Genome-Wide Identification of SNAC1-Targeted Genes Involved in Drought Response in Rice.

Xu Li, Yu Chang, Siqi Ma, Jianqiang Shen, Honghong Hu, Lizhong Xiong
Author Information
  1. Xu Li: National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China.
  2. Yu Chang: National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China.
  3. Siqi Ma: National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China.
  4. Jianqiang Shen: National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China.
  5. Honghong Hu: National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China.
  6. Lizhong Xiong: National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China.

Abstract

Drought stress can cause huge crop production losses. Drought resistance consists of complex traits, and is regulated by arrays of unclear networks at the molecular level. A stress-responsive NAC transcription factor gene has been reported for its function in the positive regulation of drought resistance in rice, and several downstream SNAC1 targets have been identified. However, a complete regulatory network mediated by SNAC1 in drought response remains unknown. In this study, we performed Chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq of -overexpression transgenic rice (-OE) lines and wild-type under normal and moderate drought stress conditions, to identify all SNAC1 target genes at a genome-wide scale by RNA-Seq analyses. We detected 980 differentially expressed genes (DEGs) in the -OE lines compared to the wild-type control under drought stress conditions. By ChIP-Seq analyses, we identified 4,339 SNAC1-binding genes under drought stress conditions (SNAC1BGDs). By combining the DEGs and SNAC1BGDs, we identified 93 SNAC1-targeted genes involved in drought responses (SNAC1TGDs). Most SNAC1TGDs are involved in transcriptional regulation, response to water loss, and other processes related to stress responses. Moreover, the major motifs in the SNAC1BGDs promoters include a NAC recognition sequence (NACRS) and an ABA responsive element (ABRE). -OE lines are more sensitive to ABA than wild-type. SNAC1 can bind to the promoter, an important ABA signaling regulator, and positively regulate the expression of several ABA signaling genes.

Keywords

References

  1. BMC Plant Biol. 2016 Sep 20;16(1):203 [PMID: 27646344]
  2. Plant Physiol. 2008 Dec;148(4):1938-52 [PMID: 18931143]
  3. Nat Protoc. 2008;3(5):824-34 [PMID: 18451790]
  4. J Exp Bot. 2015 Nov;66(21):6803-17 [PMID: 26261267]
  5. Mol Biotechnol. 2012 Oct;52(2):101-10 [PMID: 22161313]
  6. J Exp Bot. 2014 May;65(8):2119-35 [PMID: 24604734]
  7. Plant J. 2004 Sep;39(6):863-76 [PMID: 15341629]
  8. Biochim Biophys Acta. 2012 Feb;1819(2):97-103 [PMID: 22037288]
  9. Plant Physiol. 2006 Aug;141(4):1376-88 [PMID: 16778011]
  10. Ann Bot. 2010 Mar;105(3):401-9 [PMID: 20100696]
  11. Front Plant Sci. 2016 May 10;7:627 [PMID: 27242831]
  12. OMICS. 2011 Dec;15(12):839-57 [PMID: 22136664]
  13. J Exp Bot. 2012 Jun;63(10):3643-56 [PMID: 22412187]
  14. Plant Physiol. 2010 May;153(1):185-97 [PMID: 20335401]
  15. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92 [PMID: 16924117]
  16. Front Plant Sci. 2016 Jan 18;6:1174 [PMID: 26834757]
  17. Bioinformatics. 2011 Jun 15;27(12):1696-7 [PMID: 21486936]
  18. Plant Cell. 2006 Nov;18(11):3132-44 [PMID: 17098812]
  19. Genet Mol Res. 2014 May 23;13(2):4022-35 [PMID: 24938613]
  20. Mol Plant. 2018 Jun 4;11(6):789-805 [PMID: 29614319]
  21. Plant Mol Biol. 2017 Mar;93(4-5):511-532 [PMID: 28039561]
  22. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  23. Int J Mol Sci. 2015 Feb 17;16(2):4306-26 [PMID: 25690040]
  24. PLoS One. 2014 Jan 28;9(1):e86895 [PMID: 24489802]
  25. Cell. 2015 Mar 12;160(6):1209-21 [PMID: 25728666]
  26. Plant Physiol. 2016 Aug;171(4):2810-25 [PMID: 27325665]
  27. Plant Physiol. 2014 Dec;166(4):2100-14 [PMID: 25318938]
  28. Planta. 2009 Feb;229(3):605-15 [PMID: 19048288]
  29. Plant Mol Biol. 2009 Oct;71(3):291-305 [PMID: 19618278]
  30. Development. 2001 Apr;128(7):1127-35 [PMID: 11245578]
  31. Plant Biotechnol J. 2014 Jan;12(1):38-48 [PMID: 24011328]
  32. Plant Cell Environ. 2019 Apr;42(4):1125-1138 [PMID: 30399648]
  33. J Exp Bot. 2013 Jan;64(2):569-83 [PMID: 23202132]
  34. Plant Sci. 2013 Apr;203-204:33-40 [PMID: 23415326]
  35. Front Plant Sci. 2017 Apr 12;8:565 [PMID: 28446918]
  36. Gene. 2010 Oct 1;465(1-2):30-44 [PMID: 20600702]
  37. Plant Cell. 2002;14 Suppl:S165-83 [PMID: 12045276]
  38. J Exp Bot. 2014 Feb;65(2):453-64 [PMID: 24474809]
  39. Science. 2006 Nov 24;314(5803):1298-301 [PMID: 17124321]
  40. Planta. 2009 Feb;229(3):577-91 [PMID: 19034497]
  41. PLoS One. 2012;7(12):e52030 [PMID: 23251677]
  42. Annu Rev Plant Biol. 2014;65:715-41 [PMID: 24313844]
  43. Plant J. 2006 May;46(4):601-12 [PMID: 16640597]
  44. Plant Mol Biol. 2008 May;67(1-2):169-81 [PMID: 18273684]
  45. Plant Physiol. 2007 Jul;144(3):1416-28 [PMID: 17535819]
  46. Plant J. 2004 Sep;39(5):776-89 [PMID: 15315638]
  47. F1000Res. 2013 Sep 16;2:188 [PMID: 24555089]
  48. Plant Cell. 2004 Sep;16(9):2481-98 [PMID: 15319476]
  49. Plant Biotechnol J. 2013 Jan;11(1):101-14 [PMID: 23094910]
  50. Plant J. 2003 Feb;33(4):751-63 [PMID: 12609047]
  51. Nat Commun. 2014 Mar 19;5:3476 [PMID: 24647160]
  52. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  53. Planta. 2010 Oct;232(5):1033-43 [PMID: 20683728]
  54. Plant J. 2010 Mar;61(6):1041-52 [PMID: 20409277]
  55. J Genet Genomics. 2014 Nov 20;41(11):609-12 [PMID: 25434685]
  56. Plant J. 2011 Oct;68(2):302-13 [PMID: 21707801]
  57. Trends Plant Sci. 2012 Jun;17(6):369-81 [PMID: 22445067]
  58. Plant Mol Biol. 2008 Dec;68(6):533-55 [PMID: 18754079]
  59. Plant Mol Biol. 2014 Apr;84(6):693-705 [PMID: 24337801]
  60. BMC Plant Biol. 2016 Apr 14;16:86 [PMID: 27079791]
  61. Plant Physiol. 2018 Jun;177(2):713-727 [PMID: 29717020]
  62. Plant Cell Physiol. 2018 Feb 1;59(2):290-303 [PMID: 29186531]
  63. Plant Cell. 2006 Nov;18(11):3158-70 [PMID: 17114348]
  64. Plant Cell. 2016 Mar;28(3):680-95 [PMID: 26977084]
  65. Rev Environ Health. 2014;29(1-2):71-7 [PMID: 24695031]
  66. Plant Cell. 2013 Nov;25(11):4708-24 [PMID: 24285786]
  67. Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6410-5 [PMID: 19339499]
  68. Cell. 1996 Apr 19;85(2):159-70 [PMID: 8612269]
  69. Science. 2016 Nov 4;354(6312): [PMID: 27811239]
  70. Biochem J. 2010 Feb 09;426(2):183-96 [PMID: 19995345]
  71. J Agric Food Chem. 2018 Sep 12;66(36):9399-9408 [PMID: 30133277]
  72. Plant Cell. 2018 Jan;30(1):228-244 [PMID: 29237723]
  73. Plant Cell Physiol. 2015 Dec;56(12):2325-39 [PMID: 26443376]
  74. Plant Cell. 1997 Jun;9(6):841-57 [PMID: 9212461]
  75. Mol Plant. 2013 Nov;6(6):1975-83 [PMID: 23956122]
  76. Planta. 2013 Jan;237(1):211-24 [PMID: 23007553]
  77. J Exp Bot. 2012 Jan;63(2):1013-24 [PMID: 22071266]