Network-based feature selection reveals substructures of gene modules responding to salt stress in rice.

Qian Du, Malachy Campbell, Huihui Yu, Kan Liu, Harkamal Walia, Qi Zhang, Chi Zhang
Author Information
  1. Qian Du: School of Biological Sciences Center for Plant Science and Innovation University of Nebraska Lincoln NE.
  2. Malachy Campbell: Department of Agronomy and Horticulture Center for Plant Science and Innovation University of Nebraska Lincoln NE.
  3. Huihui Yu: School of Biological Sciences Center for Plant Science and Innovation University of Nebraska Lincoln NE.
  4. Kan Liu: School of Biological Sciences Center for Plant Science and Innovation University of Nebraska Lincoln NE.
  5. Harkamal Walia: Department of Agronomy and Horticulture Center for Plant Science and Innovation University of Nebraska Lincoln NE.
  6. Qi Zhang: Department of Statistics University of Nebraska Lincoln NE.
  7. Chi Zhang: School of Biological Sciences Center for Plant Science and Innovation University of Nebraska Lincoln NE.

Abstract

Rice, an important food resource, is highly sensitive to salt stress, which is directly related to food security. Although many studies have identified physiological mechanisms that confer tolerance to the osmotic effects of salinity, the link between rice genotype and salt tolerance is not very clear yet. Association of gene co-expression network and rice phenotypic data under stress has penitential to identify stress-responsive genes, but there is no standard method to associate stress phenotype with gene co-expression network. A novel method for integration of gene co-expression network and stress phenotype data was developed to conduct a system analysis to link genotype to phenotype. We applied a LASSO-based method to the gene co-expression network of rice with salt stress to discover key genes and their interactions for salt tolerance-related phenotypes. Submodules in gene modules identified from the co-expression network were selected by the LASSO regression, which establishes a linear relationship between gene expression profiles and physiological responses, that is, sodium/potassium condenses under salt stress. Genes in these submodules have functions related to ion transport, osmotic adjustment, and oxidative tolerance. We argued that these genes in submodules are biologically meaningful and useful for studies on rice salt tolerance. This method can be applied to other studies to efficiently and reliably integrate co-expression network and phenotypic data.

Keywords

References

  1. Nat Commun. 2014;5:3231 [PMID: 24488081]
  2. PLoS Genet. 2017 Jun 5;13(6):e1006823 [PMID: 28582424]
  3. Redox Rep. 2011;16(2):78-90 [PMID: 21722416]
  4. Glycoconj J. 2010 Jan;27(1):133-50 [PMID: 19898933]
  5. BMC Plant Biol. 2016 May 10;16(1):109 [PMID: 27160076]
  6. J Biol Chem. 2012 Dec 28;287(53):44062-70 [PMID: 23148213]
  7. Curr Opin Cell Biol. 2009 Aug;21(4):494-500 [PMID: 19410443]
  8. Bioinformatics. 2014 Jun 15;30(12):i139-48 [PMID: 24931977]
  9. Plant Cell. 2013 Nov;25(11):4285-304 [PMID: 24249833]
  10. Proteomics. 2006 May;6(9):2733-45 [PMID: 16572470]
  11. Nat Biotechnol. 1999 Feb;17(2):192-6 [PMID: 10052358]
  12. Plant Direct. 2019 Aug 12;3(8):e00154 [PMID: 31417977]
  13. Front Plant Sci. 2018 Jul 24;9:1058 [PMID: 30087686]
  14. IEEE/ACM Trans Comput Biol Bioinform. 2005 Jul-Sep;2(3):254-61 [PMID: 17044188]
  15. Nat Commun. 2011 Sep 13;2:467 [PMID: 21915109]
  16. Plant Physiol. 1996 Jan;110(1):249-257 [PMID: 12226181]
  17. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  18. Annu Rev Plant Biol. 2006;57:567-97 [PMID: 16669774]
  19. Plant Cell Environ. 2014 May;37(5):1144-58 [PMID: 24237159]
  20. Bioinformatics. 2004 Dec 12;20(18):3710-5 [PMID: 15297299]
  21. Curr Opin Plant Biol. 2005 Jun;8(3):254-63 [PMID: 15860422]
  22. Plant Physiol. 2008 Aug;147(4):1710-22 [PMID: 18583533]
  23. Theor Appl Genet. 2004 Jul;109(2):377-83 [PMID: 15067507]
  24. Front Plant Sci. 2017 Nov 24;8:2036 [PMID: 29225611]
  25. BMC Syst Biol. 2007 Nov 21;1:54 [PMID: 18031580]
  26. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  27. PLoS One. 2013;8(4):e60045 [PMID: 23577081]
  28. Plant Cell. 2018 Dec;30(12):2922-2942 [PMID: 30413654]
  29. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  30. BMC Plant Biol. 2016 Jan 05;16:3 [PMID: 26733420]
  31. J Comput Biol. 2011 Nov;18(11):1693-707 [PMID: 21951053]
  32. PLoS Genet. 2011 Aug;7(8):e1002221 [PMID: 21829395]
  33. Plant Physiol. 2010 Sep;154(1):13-24 [PMID: 20668062]
  34. Bioinformatics. 2022 May 13;38(10):2943-2945 [PMID: 35561197]
  35. Ann Bot. 2015 Feb;115(3):327-31 [PMID: 25844430]
  36. Plant Mol Biol. 2009 Jan;69(1-2):91-105 [PMID: 18839316]
  37. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  38. Plant Mol Biol. 2015 May;88(1-2):85-99 [PMID: 25800365]
  39. Sci Rep. 2017 Feb 09;7:42131 [PMID: 28181537]
  40. Bioinformation. 2012;8(18):855-61 [PMID: 23144540]
  41. Eur J Neurosci. 1997 Jun;9(6):1273-81 [PMID: 9215711]
  42. BMC Plant Biol. 2017 Nov 7;17(1):194 [PMID: 29115926]
  43. Bioinformatics. 2009 Mar 15;25(6):714-21 [PMID: 19176549]

Word Cloud

Similar Articles

Cited By