Heterogeneity of human bone marrow and blood natural killer cells defined by single-cell transcriptome.

Chao Yang, Jason R Siebert, Robert Burns, Zachary J Gerbec, Benedetta Bonacci, Amy Rymaszewski, Mary Rau, Matthew J Riese, Sridhar Rao, Karen-Sue Carlson, John M Routes, James W Verbsky, Monica S Thakar, Subramaniam Malarkannan
Author Information
  1. Chao Yang: Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.
  2. Jason R Siebert: Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.
  3. Robert Burns: Bioinfomatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA.
  4. Zachary J Gerbec: Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.
  5. Benedetta Bonacci: Flow Cytometry Core, Blood Research Institute, Versiti, Milwaukee, WI, USA.
  6. Amy Rymaszewski: Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA. ORCID
  7. Mary Rau: Departments of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
  8. Matthew J Riese: Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
  9. Sridhar Rao: Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA. ORCID
  10. Karen-Sue Carlson: Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
  11. John M Routes: Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
  12. James W Verbsky: Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
  13. Monica S Thakar: Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.
  14. Subramaniam Malarkannan: Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA. subra.malar@bcw.edu. ORCID

Abstract

Natural killer (NK) cells are critical to both innate and adaptive immunity. However, the development and heterogeneity of human NK cells are yet to be fully defined. Using single-cell RNA-sequencing technology, here we identify distinct NK populations in human bone marrow and blood, including one population expressing higher levels of immediate early genes indicative of a homeostatic activation. Functionally matured NK cells with high expression of CX3CR1, HAVCR2 (TIM-3), and ZEB2 represents terminally differentiated status with the unique transcriptional profile. Transcriptomic and pseudotime analyses identify a transitional population between CD56 and CD56 NK cells. Finally, a donor with GATA2 mutation exhibits reduced percentage of CD56 NK cells with altered transcriptome and elevated cell death. These data expand our understanding of the heterogeneity and development of human NK cells.

References

  1. Trends Immunol. 2007 Feb;28(2):58-65 [PMID: 17196432]
  2. Lab Invest. 2010 Sep;90(9):1274-84 [PMID: 20498652]
  3. Cell. 2019 Jan 10;176(1-2):348-360.e12 [PMID: 30595449]
  4. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10382-7 [PMID: 12930893]
  5. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  6. Trends Immunol. 2001 Nov;22(11):633-40 [PMID: 11698225]
  7. Immunity. 2018 Sep 18;49(3):464-476.e4 [PMID: 30193847]
  8. J Exp Med. 2009 Jan 16;206(1):25-34 [PMID: 19103877]
  9. Blood. 2016 Aug 25;128(8):e20-31 [PMID: 27365425]
  10. Front Immunol. 2017 Apr 13;8:432 [PMID: 28450865]
  11. Blood. 2012 Apr 19;119(16):3734-43 [PMID: 22383801]
  12. Front Immunol. 2017 Nov 13;8:1459 [PMID: 29180998]
  13. Curr Opin Immunol. 2018 Apr;51:146-153 [PMID: 29605760]
  14. Immunol Lett. 2011 Aug 30;138(2):93-6 [PMID: 21324341]
  15. Eur J Immunol. 2017 Sep;47(9):1562-1572 [PMID: 28688208]
  16. Mol Cell Proteomics. 2013 May;12(5):1099-114 [PMID: 23315794]
  17. J Leukoc Biol. 2016 Jun;99(6):1065-76 [PMID: 26710799]
  18. Adv Biol Regul. 2016 Sep;62:37-49 [PMID: 27220739]
  19. Blood. 2010 Aug 26;116(8):1299-307 [PMID: 20505160]
  20. Cell Rep. 2016 Jul 12;16(2):379-391 [PMID: 27373165]
  21. Proc Natl Acad Sci U S A. 2014 May 6;111(18):6708-13 [PMID: 24760828]
  22. BMC Genomics. 2007 Jul 10;8:230 [PMID: 17623099]
  23. Immunity. 2015 Aug 18;43(2):394-407 [PMID: 26287684]
  24. Cell. 2017 Mar 9;168(6):1086-1100.e10 [PMID: 28283063]
  25. Bioinformatics. 2011 Jun 15;27(12):1739-40 [PMID: 21546393]
  26. J Leukoc Biol. 2017 Jan;101(1):39-52 [PMID: 27793959]
  27. Nat Immunol. 2016 Aug 19;17(9):1025-36 [PMID: 27540992]
  28. Front Immunol. 2013 Dec 30;4:499 [PMID: 24416035]
  29. Nat Methods. 2017 Mar;14(3):309-315 [PMID: 28114287]
  30. Nat Rev Immunol. 2009 Jan;9(1):62-70 [PMID: 19104500]
  31. Eur J Immunol. 2014 Feb;44(2):348-51 [PMID: 24510500]
  32. Sci Transl Med. 2013 Oct 23;5(208):208ra145 [PMID: 24154599]
  33. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  34. J Immunol. 2016 Jan 1;196(1):207-16 [PMID: 26621859]
  35. Immunity. 2018 Nov 20;49(5):971-986.e5 [PMID: 30413361]
  36. J Biol Chem. 2007 Aug 17;282(33):23981-95 [PMID: 17575275]
  37. Nat Immunol. 2014 Aug;15(8):749-757 [PMID: 24973821]
  38. Immunol Cell Biol. 2014 Mar;92(3):245-55 [PMID: 24445602]
  39. Microbes Infect. 2002 Dec;4(15):1545-58 [PMID: 12505527]
  40. J Immunol. 2004 Dec 1;173(11):6547-63 [PMID: 15557145]
  41. Mol Aspects Med. 2018 Feb;59:114-122 [PMID: 28712804]
  42. J Exp Med. 2015 Nov 16;212(12):2015-25 [PMID: 26503444]
  43. Immunology. 2011 May;133(1):62-73 [PMID: 21320123]
  44. Sci Rep. 2017 Jun 14;7(1):3501 [PMID: 28615725]
  45. Stem Cells. 2003;21(2):123-30 [PMID: 12634408]
  46. Br J Haematol. 2015 Apr;169(2):173-87 [PMID: 25707267]
  47. Annu Rev Biochem. 2001;70:649-76 [PMID: 11395419]
  48. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  49. Clin Immunol Immunopathol. 1995 Aug;76(2):195-202 [PMID: 7614738]
  50. Immunity. 2017 Nov 21;47(5):820-833 [PMID: 29166586]
  51. J Leukoc Biol. 2006 Dec;80(6):1529-41 [PMID: 16966385]
  52. Adv Immunol. 2011;109:45-85 [PMID: 21569912]
  53. Immunol Rev. 2013 Nov;256(1):30-47 [PMID: 24117811]
  54. Semin Immunol. 2014 Apr;26(2):132-7 [PMID: 24661538]
  55. Blood. 2013 Apr 4;121(14):2669-77 [PMID: 23365458]
  56. Nature. 2009 Feb 5;457(7230):722-5 [PMID: 18978771]
  57. Cell Stem Cell. 2014 Apr 3;14(4):486-499 [PMID: 24702997]
  58. Immunity. 2016 May 17;44(5):1140-50 [PMID: 27178467]
  59. Immunity. 2005 Jan;22(1):131-42 [PMID: 15664165]
  60. Immunity. 2015 Mar 17;42(3):443-56 [PMID: 25786176]
  61. Blood. 2010 Nov 11;116(19):3865-74 [PMID: 20733159]
  62. J Exp Med. 2003 Oct 20;198(8):1201-12 [PMID: 14568979]
  63. Nat Rev Immunol. 2011 Aug 26;11(10):645-57 [PMID: 21869816]
  64. J Immunol. 2016 Jul 1;197(1):78-84 [PMID: 27226093]
  65. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  66. Eur J Immunol. 2017 Jan;47(1):84-93 [PMID: 27792288]
  67. Immunology. 2009 Apr;126(4):458-65 [PMID: 19278419]
  68. Immunity. 2014 Dec 18;41(6):988-1000 [PMID: 25500367]
  69. Blood. 2010 Nov 11;116(19):3853-64 [PMID: 20696944]
  70. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  71. Nat Immunol. 2008 May;9(5):503-10 [PMID: 18425107]
  72. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  73. Blood. 2006 Jul 15;108(2):591-9 [PMID: 16569770]
  74. J Immunol. 2011 Feb 15;186(4):1891-7 [PMID: 21289313]
  75. Nat Immunol. 2009 Jan;10(1):66-74 [PMID: 19029905]
  76. Cell. 2018 Feb 22;172(5):1022-1037.e14 [PMID: 29429633]
  77. J Immunol. 2016 Apr 1;196(7):2923-31 [PMID: 26994304]

Grants

  1. R01 AI102893/NIAID NIH HHS
  2. R01 CA179363/NCI NIH HHS
  3. R01 CA204231/NCI NIH HHS
  4. T32 GM080202/NIGMS NIH HHS

MeSH Term

Bone Marrow
Bone Marrow Cells
CD56 Antigen
CX3C Chemokine Receptor 1
Genetic Heterogeneity
Hepatitis A Virus Cellular Receptor 2
Humans
Killer Cells, Natural
Single-Cell Analysis
Transcriptome
Zinc Finger E-box Binding Homeobox 2

Chemicals

CD56 Antigen
CX3C Chemokine Receptor 1
CX3CR1 protein, human
HAVCR2 protein, human
Hepatitis A Virus Cellular Receptor 2
ZEB2 protein, human
Zinc Finger E-box Binding Homeobox 2