Controlled modelling of human epiblast and amnion development using stem cells.

Yi Zheng, Xufeng Xue, Yue Shao, Sicong Wang, Sajedeh Nasr Esfahani, Zida Li, Jonathon M Muncie, Johnathon N Lakins, Valerie M Weaver, Deborah L Gumucio, Jianping Fu
Author Information
  1. Yi Zheng: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
  2. Xufeng Xue: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
  3. Yue Shao: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
  4. Sicong Wang: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
  5. Sajedeh Nasr Esfahani: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
  6. Zida Li: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
  7. Jonathon M Muncie: Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA.
  8. Johnathon N Lakins: Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA.
  9. Valerie M Weaver: Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA.
  10. Deborah L Gumucio: Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
  11. Jianping Fu: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. jpfu@umich.edu.

Abstract

Early human embryonic development involves extensive lineage diversification, cell-fate specification and tissue patterning. Despite its basic and clinical importance, early human embryonic development remains relatively unexplained owing to interspecies divergence and limited accessibility to human embryo samples. Here we report that human pluripotent stem cells (hPSCs) in a microfluidic device recapitulate, in a highly controllable and scalable fashion, landmarks of the development of the epiblast and amniotic ectoderm parts of the conceptus, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and primitive streak cells. We further show that amniotic ectoderm-like cells function as a signalling centre to trigger the onset of gastrulation-like events in hPSCs. Given its controllability and scalability, the microfluidic model provides a powerful experimental system to advance knowledge of human embryology and reproduction. This model could assist in the rational design of differentiation protocols of hPSCs for disease modelling and cell therapy, and in high-throughput drug and toxicity screens to prevent pregnancy failure and birth defects.

References

  1. Cell Stem Cell. 2008 Aug 7;3(2):182-95 [PMID: 18682240]
  2. Nature. 2018 May;557(7703):106-111 [PMID: 29720634]
  3. Nature. 2019 Sep;573(7774):421-425 [PMID: 31511693]
  4. Nat Commun. 2017 Aug 8;8(1):208 [PMID: 28785084]
  5. Nature. 2016 May 04;533(7602):251-4 [PMID: 27144363]
  6. Nat Biotechnol. 2010 Jun;28(6):581-3 [PMID: 20512122]
  7. Nat Biotechnol. 2007 Jun;25(6):681-6 [PMID: 17529971]
  8. Development. 2015 Jan 1;142(1):9-12 [PMID: 25516964]
  9. Stem Cell Reports. 2016 Jun 14;6(6):787-797 [PMID: 27185282]
  10. Nat Mater. 2017 Apr;16(4):419-425 [PMID: 27941807]
  11. Cell Stem Cell. 2014 Sep 4;15(3):310-325 [PMID: 25042702]
  12. Nat Methods. 2014 Aug;11(8):847-54 [PMID: 24973948]
  13. Development. 2015 Sep 15;142(18):3090-9 [PMID: 26395138]
  14. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16806-11 [PMID: 17077151]
  15. Science. 2017 Apr 14;356(6334): [PMID: 28254784]
  16. Nature. 2018 Oct;562(7726):272-276 [PMID: 30283134]
  17. Nature. 2016 Sep 1;537(7618):57-62 [PMID: 27556940]
  18. Development. 2014 Nov;141(22):4231-42 [PMID: 25371360]
  19. Cell. 2015 Jan 15;160(1-2):253-68 [PMID: 25543152]
  20. Stem Cells Int. 2012;2012:987185 [PMID: 22966238]
  21. Stem Cell Reports. 2015 Dec 8;5(6):954-962 [PMID: 26626176]
  22. Dev Cell. 2016 Oct 24;39(2):169-185 [PMID: 27720607]
  23. Nat Cell Biol. 2016 Jun;18(6):700-708 [PMID: 27144686]
  24. Cell Stem Cell. 2008 Nov 6;3(5):508-18 [PMID: 18983966]
  25. Dev Cell. 2013 Dec 9;27(5):516-29 [PMID: 24331926]
  26. Nature. 2018 Dec;564(7735):183-185 [PMID: 30542177]
  27. Cell Stem Cell. 2009 Sep 4;5(3):332-42 [PMID: 19733544]
  28. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  29. Nature. 2017 Jun 15;546(7658):416-420 [PMID: 28607482]
  30. Cell Stem Cell. 2011 Aug 5;9(2):144-55 [PMID: 21816365]
  31. Nature. 2017 Dec 14;552(7684):239-243 [PMID: 29186120]
  32. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  33. Nat Mater. 2018 Jul;17(7):633-641 [PMID: 29784997]
  34. Nature. 2016 May 04;533(7602):169-71 [PMID: 27172031]
  35. Cell Stem Cell. 2015 Aug 6;17(2):178-94 [PMID: 26189426]
  36. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]

Grants

  1. R01 DK089933/NIDDK NIH HHS

MeSH Term

Amnion
Cell Differentiation
Embryo, Mammalian
Female
Germ Layers
Humans
Models, Biological
Pluripotent Stem Cells
Pregnancy
Primitive Streak