Electrical and synaptic integration of glioma into neural circuits.

Humsa S Venkatesh, Wade Morishita, Anna C Geraghty, Dana Silverbush, Shawn M Gillespie, Marlene Arzt, Lydia T Tam, Cedric Espenel, Anitha Ponnuswami, Lijun Ni, Pamelyn J Woo, Kathryn R Taylor, Amit Agarwal, Aviv Regev, David Brang, Hannes Vogel, Shawn Hervey-Jumper, Dwight E Bergles, Mario L Suvà, Robert C Malenka, Michelle Monje
Author Information
  1. Humsa S Venkatesh: Department of Neurology, Stanford University, Stanford, CA, USA.
  2. Wade Morishita: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
  3. Anna C Geraghty: Department of Neurology, Stanford University, Stanford, CA, USA.
  4. Dana Silverbush: Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
  5. Shawn M Gillespie: Department of Neurology, Stanford University, Stanford, CA, USA.
  6. Marlene Arzt: Department of Neurology, Stanford University, Stanford, CA, USA.
  7. Lydia T Tam: Department of Neurology, Stanford University, Stanford, CA, USA.
  8. Cedric Espenel: Cell Sciences Imaging Facility, Stanford University School of Medicine, Stanford, CA, USA.
  9. Anitha Ponnuswami: Department of Neurology, Stanford University, Stanford, CA, USA.
  10. Lijun Ni: Department of Neurology, Stanford University, Stanford, CA, USA.
  11. Pamelyn J Woo: Department of Neurology, Stanford University, Stanford, CA, USA.
  12. Kathryn R Taylor: Department of Neurology, Stanford University, Stanford, CA, USA.
  13. Amit Agarwal: Department of Neuroscience, Johns Hopkins University, Baltimore, MA, USA.
  14. Aviv Regev: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  15. David Brang: Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
  16. Hannes Vogel: Department of Neurology, Stanford University, Stanford, CA, USA.
  17. Shawn Hervey-Jumper: Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
  18. Dwight E Bergles: Department of Neuroscience, Johns Hopkins University, Baltimore, MA, USA.
  19. Mario L Suvà: Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
  20. Robert C Malenka: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
  21. Michelle Monje: Department of Neurology, Stanford University, Stanford, CA, USA. mmonje@stanford.edu.

Abstract

High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated release of growth factors promotes glioma growth, but this alone is insufficient to explain the effect that neuronal activity exerts on glioma progression. Here we show that neuron and glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified by gap junction-mediated tumour interconnections, forming an electrically coupled network. Depolarization of glioma membranes assessed by in vivo optogenetics promotes proliferation, whereas pharmacologically or genetically blocking electrochemical signalling inhibits the growth of glioma xenografts and extends mouse survival. Emphasizing the positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in the glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration into neural circuits promotes glioma progression.

References

  1. Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015). [PMID: 25913192]
  2. Venkatesh, H. S. et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533–537 (2017). [PMID: 28959975]
  3. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000). [DOI: 10.1038/35012083]
  4. Káradóttir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005). [PMID: 16372011]
  5. LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298 (1995). [DOI: 10.1016/0896-6273(95)90008-X]
  6. Luk, K. C. & Sadikot, A. F. Glutamate and regulation of proliferation in the developing mammalian telencephalon. Dev. Neurosci. 26, 218–228 (2004). [DOI: 10.1159/000082139]
  7. Liu, X., Wang, Q., Haydar, T. F. & Bordey, A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci. 8, 1179–1187 (2005). [PMID: 16116450]
  8. Deisseroth, K. et al. Excitation–neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42, 535–552 (2004). [DOI: 10.1016/S0896-6273(04)00266-1]
  9. Kougioumtzidou, E. et al. Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. eLife 6, e28080 (2017). [PMID: 28608780]
  10. Filbin, M. G. et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360, 331–335 (2018). [PMID: 29674595]
  11. Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017). [PMID: 28360267]
  12. Sommer, B., Köhler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991). [DOI: 10.1016/0092-8674(91)90568-J]
  13. Hollmann, M., Hartley, M. & Heinemann, S. Ca permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252, 851–853 (1991). [DOI: 10.1126/science.1709304]
  14. Venkataramani, V. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature https://doi.org/10.1038/s41586-019-1564-x (2019).
  15. Oliet, S. H., Malenka, R. C. & Nicoll, R. A. Bidirectional control of quantal size by synaptic activity in the hippocampus. Science 271, 1294–1297 (1996). [DOI: 10.1126/science.271.5253.1294]
  16. Bergles, D. E. & Jahr, C. E. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19, 1297–1308 (1997). [DOI: 10.1016/S0896-6273(00)80420-1]
  17. Lüscher, C., Malenka, R. C. & Nicoll, R. A. Monitoring glutamate release during LTP with glial transporter currents. Neuron 21, 435–441 (1998). [DOI: 10.1016/S0896-6273(00)80552-8]
  18. Sibille, J., Pannasch, U. & Rouach, N. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse. J. Physiol. 592, 87–102 (2014). [DOI: 10.1113/jphysiol.2013.261735]
  19. McKhann, G. M. II, D’Ambrosio, R. & Janigro, D. Heterogeneity of astrocyte resting membrane potentials and intercellular coupling revealed by whole-cell and gramicidin-perforated patch recordings from cultured neocortical and hippocampal slice astrocytes. J. Neurosci. 17, 6850–6863 (1997). [PMID: 9278520]
  20. Osswald, M. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015). [DOI: 10.1038/nature16071]
  21. Labrakakis, C., Patt, S., Hartmann, J. & Kettenmann, H. Glutamate receptor activation can trigger electrical activity in human glioma cells. Eur. J. Neurosci. 10, 2153–2162 (1998). [DOI: 10.1046/j.1460-9568.1998.00226.x]
  22. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004). [DOI: 10.1038/nature03128]
  23. Ishiuchi, S. et al. Ca-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J. Neurosci. 27, 7987–8001 (2007). [PMID: 17652589]
  24. Sontheimer, H. A role for glutamate in growth and invasion of primary brain tumors. J. Neurochem. 105, 287–295 (2008). [PMID: 18284616]
  25. Lyons, S. A., Chung, W. J., Weaver, A. K., Ogunrinu, T. & Sontheimer, H. Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res. 67, 9463–9471 (2007). [PMID: 17909056]
  26. Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016). [PMID: 27225120]
  27. Campbell, S. L., Buckingham, S. C. & Sontheimer, H. Human glioma cells induce hyperexcitability in cortical networks. Epilepsia 53, 1360–1370 (2012). [PMID: 22709330]
  28. John Lin, C. C. et al. Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 20, 396–405 (2017). [DOI: 10.1038/nn.4493]
  29. Buckingham, S. C. et al. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17, 1269–1274 (2011). [PMID: 21909104]
  30. Campbell, S. L. et al. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 63, 23–36 (2015). [DOI: 10.1002/glia.22730]
  31. Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S. Neural correlates of high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28, 11526–11536 (2008). [PMID: 18987189]
  32. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011). [PMID: 21796121]
  33. Hodgkin, A. L. & Katz, B. The effect of sodium ions on the electrical activity of giant axon of the squid. J. Physiol. 108, 37–77 (1949). [DOI: 10.1113/jphysiol.1949.sp004310]
  34. Ransom, B. R. & Goldring, S. Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. J. Neurophysiol. 36, 855–868 (1973). [DOI: 10.1152/jn.1973.36.5.855]
  35. Bittman, K. S. & LoTurco, J. J. Differential regulation of connexin 26 and 43 in murine neocortical precursors. Cereb. Cortex 9, 188–195 (1999). [DOI: 10.1093/cercor/9.2.188]
  36. LoTurco, J. J., Blanton, M. G. & Kriegstein, A. R. Initial expression and endogenous activation of NMDA channels in early neocortical development. J. Neurosci. 11, 792–799 (1991). [PMID: 1825846]
  37. Marins, M. et al. Gap junctions are involved in cell migration in the early postnatal subventricular zone. Dev. Neurobiol. 69, 715–730 (2009). [DOI: 10.1002/dneu.20737]
  38. Ohtaka-Maruyama, C. et al. Synaptic transmission from subplate neurons controls radial migration of neocortical neurons. Science 360, 313–317 (2018). [DOI: 10.1126/science.aar2866]
  39. Kuffler, S. W. Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc. R. Soc. Lond. B 168, 1–21 (1967). [DOI: 10.1098/rspb.1967.0047]
  40. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011). [DOI: 10.1016/j.neuron.2011.06.004]
  41. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014). [DOI: 10.1038/nprot.2014.006]
  42. Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016). [PMID: 27806376]
  43. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). [PMID: 29608179]
  44. Lin, G. L. et al. Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. Acta Neuropathol. Commun. 6, 51 (2018). [PMID: 29954445]
  45. Qin, E. Y. et al. Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma. Cell 170, 845–859.e819 (2017). [PMID: 28823557]
  46. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017). [PMID: 29187165]
  47. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). [PMID: 22743772]
  48. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). [PMID: 22930834]
  49. Pietzsch, T., Preibisch, S., Tomancák, P. & Saalfeld, S. ImgLib2—generic image processing in Java. Bioinformatics 28, 3009–3011 (2012). [PMID: 22962343]
  50. Wu, D. et al. Postsynaptic synaptotagmins mediate AMPA receptor exocytosis during LTP. Nature 544, 316–321 (2017). [PMID: 28355182]
  51. Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008). [DOI: 10.1364/OL.33.000156]
  52. Achanta, R. et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012). [DOI: 10.1109/TPAMI.2012.120]
  53. Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016). [PMID: 26774160]
  54. van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014). [PMID: 25024921]
  55. Kawahara, Y., Ito, K., Sun, H., Kanazawa, I. & Kwak, S. Low editing efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Eur. J. Neurosci. 18, 23–33 (2003). [DOI: 10.1046/j.1460-9568.2003.02718.x]
  56. Sobolevsky, A. I., Rosconi, M. P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009). [PMID: 19946266]
  57. Vinci, M., Box, C. & Eccles, S. A. Three-dimensional (3D) tumor spheroid invasion assay. J. Vis. Exp. 99, 52686 (2015).
  58. Vinci, M., Box, C., Zimmermann, M. & Eccles, S. A. Tumor spheroid-based migration assays for evaluation of therapeutic agents. Methods Mol. Biol. 986, 253–266 (2013). [DOI: 10.1007/978-1-62703-311-4_16]

Grants

  1. T32 CA009302/NCI NIH HHS
  2. P30 NS069375/NINDS NIH HHS
  3. DP1 NS111132/NINDS NIH HHS
  4. R01 NS092597/NINDS NIH HHS
  5. /Howard Hughes Medical Institute
  6. P50 MH086403/NIMH NIH HHS
  7. F31 CA200273/NCI NIH HHS
  8. K08 NS110919/NINDS NIH HHS

MeSH Term

Animals
Brain
Cell Membrane
Cell Proliferation
Electrical Synapses
Electrophysiological Phenomena
Gap Junctions
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Glioma
Heterografts
Humans
Mice
Mice, Inbred NOD
Neurons
Optogenetics
Potassium
Synaptic Transmission
Tumor Cells, Cultured

Chemicals

Potassium