Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia.

Abolfazl Doostparast Torshizi, Chris Armoskus, Hanwen Zhang, Marc P Forrest, Siwei Zhang, Tade Souaiaia, Oleg V Evgrafov, James A Knowles, Jubao Duan, Kai Wang
Author Information
  1. Abolfazl Doostparast Torshizi: Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. ORCID
  2. Chris Armoskus: College of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA. ORCID
  3. Hanwen Zhang: Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201, USA.
  4. Marc P Forrest: Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. ORCID
  5. Siwei Zhang: Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201, USA. ORCID
  6. Tade Souaiaia: College of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
  7. Oleg V Evgrafov: College of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
  8. James A Knowles: College of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA. ORCID
  9. Jubao Duan: Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201, USA. ORCID
  10. Kai Wang: Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. ORCID

Abstract

Applying tissue-specific deconvolution of transcriptional networks to identify their master regulators (MRs) in neuropsychiatric disorders has been largely unexplored. Here, using two schizophrenia (SCZ) case-control RNA-seq datasets, one on postmortem dorsolateral prefrontal cortex (DLPFC) and another on cultured olfactory neuroepithelium, we deconvolved the transcriptional networks and identified as a top candidate MR that may be dysregulated in SCZ. We validated as a MR through enrichment analysis of -binding sites in induced pluripotent stem cell (hiPSC)-derived neurons and in neuroblastoma cells. We further validated the predicted targets by knocking down in hiPSC-derived neural progenitor cells (NPCs) and glutamatergic neurons (Glut_Ns). The perturbed gene network in NPCs was more enriched for pathways involved in neuronal activity and SCZ-associated risk genes, compared to Glut_Ns. Our results suggest that may serve as a MR of a gene network dysregulated in SCZ at early stages of neurodevelopment.

References

  1. Nat Genet. 2017 Jan;49(1):27-35 [PMID: 27869829]
  2. Nucleic Acids Res. 2013 Sep;41(17):8072-84 [PMID: 23821663]
  3. Trends Mol Med. 2014 Jun;20(6):322-31 [PMID: 24594265]
  4. Stem Cell Res. 2018 May;29:88-98 [PMID: 29631039]
  5. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  6. Hum Mol Genet. 2018 Sep 15;27(18):3246-3256 [PMID: 29905862]
  7. Mol Biol (Mosk). 2015 Nov-Dec;49(6):977-83 [PMID: 26710778]
  8. Nat Genet. 2018 Apr;50(4):621-629 [PMID: 29632380]
  9. Mol Psychiatry. 2014 Apr;19(4):478-85 [PMID: 23528911]
  10. Cell Rep. 2016 Sep 6;16(10):2666-2685 [PMID: 27568567]
  11. Nucleic Acids Res. 2016 Jan 4;44(D1):D710-6 [PMID: 26687719]
  12. Biol Psychiatry. 2013 Sep 15;74(6):418-26 [PMID: 23482246]
  13. Front Mol Neurosci. 2012 Mar 15;5:33 [PMID: 22435049]
  14. Epigenetics. 2013 Oct;8(10):1030-8 [PMID: 23907097]
  15. Cell Stem Cell. 2017 Sep 7;21(3):285-287 [PMID: 28886358]
  16. Hum Mol Genet. 2011 Oct 15;20(20):4076-81 [PMID: 21791550]
  17. Mol Psychiatry. 2017 Jun;22(6):792-801 [PMID: 28348379]
  18. Nat Neurosci. 2015 Sep;18(9):1325-33 [PMID: 26214373]
  19. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83 [PMID: 23703215]
  20. Epidemiol Rev. 2008;30:67-76 [PMID: 18480098]
  21. Nat Genet. 2016 Aug;48(8):838-47 [PMID: 27322546]
  22. Genome Biol. 2015 Jan 05;16:22 [PMID: 25723102]
  23. Nat Commun. 2018 Apr 16;9(1):1471 [PMID: 29662057]
  24. Aust N Z J Psychiatry. 2008 Dec;42(12):995-1002 [PMID: 19016087]
  25. PLoS One. 2013 Aug 23;8(8):e73169 [PMID: 24058414]
  26. Cell Stem Cell. 2017 Sep 7;21(3):305-318.e8 [PMID: 28803920]
  27. Nature. 2014 Jul 24;511(7510):421-7 [PMID: 25056061]
  28. Sci Rep. 2015 Jun 12;5:11432 [PMID: 26066708]
  29. Mol Psychiatry. 2009 Dec;14(12):1083-94 [PMID: 19255580]
  30. Nat Neurosci. 2016 Apr;19(4):571-7 [PMID: 26974950]
  31. Nucleic Acids Res. 2017 Jan 4;45(D1):D804-D811 [PMID: 27907889]
  32. Nat Rev Genet. 2009 Apr;10(4):252-63 [PMID: 19274049]
  33. Nucleic Acids Res. 2016 Jan 4;44(D1):D110-5 [PMID: 26531826]
  34. Eur J Neurosci. 2010 May;31(9):1521-32 [PMID: 20525066]
  35. Nat Biotechnol. 2014 Feb;32(2):171-178 [PMID: 24441470]
  36. Nat Neurosci. 2016 Nov;19(11):1442-1453 [PMID: 27668389]
  37. Neurobiol Dis. 2010 Mar;37(3):738-46 [PMID: 20034564]
  38. Science. 2018 Dec 14;362(6420): [PMID: 30545857]
  39. Biol Psychiatry. 2005 Oct 15;58(8):668-76 [PMID: 16023620]
  40. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  41. Cell. 2017 Jun 15;169(7):1177-1186 [PMID: 28622505]
  42. Int J Neuropsychopharmacol. 2007 Aug;10(4):565-73 [PMID: 17291370]
  43. Nat Genet. 2005 Apr;37(4):382-90 [PMID: 15778709]
  44. Nat Biotechnol. 2018 Jan;36(1):70-80 [PMID: 29227469]
  45. Biol Psychiatry. 2018 Mar 15;83(6):492-498 [PMID: 28987712]
  46. BMC Syst Biol. 2010 Feb 15;4:10 [PMID: 20156358]
  47. Nat Genet. 2018 Mar;50(3):381-389 [PMID: 29483656]
  48. Eur J Med Genet. 2016 Jun;59(6-7):310-4 [PMID: 27132474]
  49. Biopreserv Biobank. 2015 Oct;13(5):311-9 [PMID: 26484571]
  50. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  51. Schizophr Bull. 2018 Aug 20;44(5):1100-1110 [PMID: 29228394]
  52. Nucleic Acid Ther. 2016 Feb;26(1):29-43 [PMID: 26509637]
  53. Nature. 2009 Aug 6;460(7256):753-7 [PMID: 19571809]
  54. Mol Syst Biol. 2010 Jun 8;6:377 [PMID: 20531406]
  55. Nat Neurosci. 2016 Nov;19(11):1433-1441 [PMID: 27694994]
  56. Neuron. 2016 Apr 6;90(1):43-55 [PMID: 26971948]
  57. Cell Rep. 2017 Jul 11;20(2):344-355 [PMID: 28700937]
  58. Nat Protoc. 2006;1(2):662-71 [PMID: 17406294]
  59. Mol Biol Evol. 2004 Nov;21(11):2058-70 [PMID: 15282333]

Grants

  1. R21 MH102685/NIMH NIH HHS
  2. R01 HG006465/NHGRI NIH HHS
  3. R01 AG063175/NIA NIH HHS
  4. R01 MH106575/NIMH NIH HHS
  5. R01 MH108728/NIMH NIH HHS
  6. R01 MH086874/NIMH NIH HHS
  7. R01 MH116281/NIMH NIH HHS

MeSH Term

Adult
Case-Control Studies
Cells, Cultured
Gene Regulatory Networks
Genetic Predisposition to Disease
Humans
Induced Pluripotent Stem Cells
Male
Neural Stem Cells
Neuroepithelial Cells
Neurons
Olfactory Mucosa
Prefrontal Cortex
Schizophrenia
Transcription Factor 4

Chemicals

TCF4 protein, human
Transcription Factor 4