Single-Cell RNA Sequencing of hESC-Derived 3D Retinal Organoids Reveals Novel Genes Regulating RPC Commitment in Early Human Retinogenesis.

Xiying Mao, Qin An, Huiyu Xi, Xian-Jie Yang, Xiangmei Zhang, Songtao Yuan, Jinmei Wang, Youjin Hu, Qinghuai Liu, Guoping Fan
Author Information
  1. Xiying Mao: Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
  2. Qin An: Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA.
  3. Huiyu Xi: Department of Ophthalmology, Xuzhou First People's Hospital of Xuzhou Medical University, Xuzhou Eye Research Institute, Xuzhou 221002, China.
  4. Xian-Jie Yang: Stein Eye Institute, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
  5. Xiangmei Zhang: Stein Eye Institute, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
  6. Songtao Yuan: Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
  7. Jinmei Wang: Institute of Regenerative Medicine and International Lab of Ocular Stem Cells at Shanghai East Hospital, School of Life Science &Technology, Tongji University, Shanghai 200092, China.
  8. Youjin Hu: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. Electronic address: huyoujin@gzzoc.com.
  9. Qinghuai Liu: Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address: liuqh@njmu.edu.cn.
  10. Guoping Fan: Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA. Electronic address: gfan@mednet.ucla.edu.

Abstract

The development of the mammalian retina is a complicated process involving the generation of distinct types of neurons from retinal progenitor cells (RPCs) in a spatiotemporal-specific manner. The progression of RPCs during retinogenesis includes RPC proliferation, cell-fate commitment, and specific neuronal differentiation. In this study, by performing single-cell RNA sequencing of cells isolated from human embryonic stem cell (hESC)-derived 3D retinal organoids, we successfully deconstructed the temporal progression of RPCs during early human retinogenesis. We identified two distinctive subtypes of RPCs with unique molecular profiles, namely multipotent RPCs and neurogenic RPCs. We found that genes related to the Notch and Wnt signaling pathways, as well as chromatin remodeling, were dynamically regulated during RPC commitment. Interestingly, our analysis identified that CCND1, a G-phase cell-cycle regulator, was coexpressed with ASCL1 in a cell-cycle-independent manner. Temporally controlled overexpression of CCND1 in retinal organoids demonstrated a role for CCND1 in promoting early retinal neurogenesis. Together, our results revealed critical pathways and novel genes in early retinogenesis of humans.

Keywords

References

  1. EMBO J. 2015 Apr 1;34(7):896-910 [PMID: 25527292]
  2. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  3. Nat Neurosci. 2012 Aug;15(8):1127-33 [PMID: 22797695]
  4. Development. 2014 Aug;141(16):3243-54 [PMID: 25100656]
  5. Dev Biol. 2005 Apr 15;280(2):386-95 [PMID: 15882580]
  6. Front Cell Dev Biol. 2016 Nov 30;4:138 [PMID: 27965955]
  7. Development. 2011 Aug;138(16):3519-31 [PMID: 21771810]
  8. Nat Commun. 2016 Mar 22;7:11102 [PMID: 27000654]
  9. Cell Rep. 2017 Jan 17;18(3):777-790 [PMID: 28099854]
  10. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  11. Annu Rev Cell Dev Biol. 2009;25:45-69 [PMID: 19575661]
  12. PLoS Genet. 2012 Jul;8(7):e1002757 [PMID: 22792072]
  13. J Cell Biochem. 2008 Oct 1;105(2):344-52 [PMID: 18655152]
  14. Cell Tissue Res. 2018 Jan;371(1):73-89 [PMID: 28620760]
  15. Mol Cell Neurosci. 2010 Oct;45(2):121-31 [PMID: 20599619]
  16. J Neurosci. 2011 Jan 26;31(4):1427-39 [PMID: 21273427]
  17. Hum Mol Genet. 2012 Apr 15;21(8):1848-60 [PMID: 22228100]
  18. Neuron. 2004 Sep 16;43(6):795-807 [PMID: 15363391]
  19. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11632-7 [PMID: 21709239]
  20. Nat Commun. 2015 Feb 19;6:6286 [PMID: 25695148]
  21. Dev Dyn. 2018 Jan;247(1):212-221 [PMID: 28675662]
  22. Brain Res. 2008 Feb 4;1192:29-36 [PMID: 17560964]
  23. Dev Biol. 2010 Apr 15;340(2):490-503 [PMID: 20144606]
  24. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):E265-74 [PMID: 21690374]
  25. Dev Dyn. 2009 Sep;238(9):2327-9 [PMID: 19449303]
  26. Nat Commun. 2014 Jun 10;5:4047 [PMID: 24915161]
  27. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  28. J Comp Neurol. 2008 Sep 20;510(3):237-50 [PMID: 18626943]
  29. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  30. J Neurosci. 2013 Jul 24;33(30):12197-207 [PMID: 23884928]
  31. Stem Cell Reports. 2018 Aug 14;11(2):565-577 [PMID: 29983386]
  32. J Neurosci. 2004 Sep 15;24(37):8124-34 [PMID: 15371513]
  33. EMBO Rep. 2017 Oct;18(10):1697-1706 [PMID: 28801535]
  34. Neural Dev. 2009 May 05;4:15 [PMID: 19416500]
  35. Development. 2016 Aug 1;143(15):2829-41 [PMID: 27385012]

Grants

  1. P30 EY000331/NEI NIH HHS
  2. R01 EY026319/NEI NIH HHS

MeSH Term

Biomarkers
Fluorescent Antibody Technique
Gene Expression Profiling
Gene Expression Regulation, Developmental
Gene Regulatory Networks
High-Throughput Nucleotide Sequencing
Human Embryonic Stem Cells
Humans
Immunophenotyping
Organogenesis
Organoids
Retina
Single-Cell Analysis
Tissue Culture Techniques

Chemicals

Biomarkers