Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis.

Eduardo Beltrán, Lisa Ann Gerdes, Julia Hansen, Andrea Flierl-Hecht, Stefan Krebs, Helmut Blum, Birgit Ertl-Wagner, Frederik Barkhof, Tania Kümpfel, Reinhard Hohlfeld, Klaus Dornmair
Author Information
  1. Eduardo Beltrán: Institute of Clinical Neuroimmunology, Biomedical Center and Hospital.
  2. Lisa Ann Gerdes: Institute of Clinical Neuroimmunology, Biomedical Center and Hospital.
  3. Julia Hansen: Institute of Clinical Neuroimmunology, Biomedical Center and Hospital.
  4. Andrea Flierl-Hecht: Institute of Clinical Neuroimmunology, Biomedical Center and Hospital.
  5. Stefan Krebs: Laboratory for Functional Genome Analysis (LAFUGA), Gene Center; and.
  6. Helmut Blum: Laboratory for Functional Genome Analysis (LAFUGA), Gene Center; and.
  7. Birgit Ertl-Wagner: Department of Radiology, Grosshadern Medical Campus; Ludwig Maximilian University of Munich, Munich, Germany.
  8. Frederik Barkhof: Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands.
  9. Tania Kümpfel: Institute of Clinical Neuroimmunology, Biomedical Center and Hospital.
  10. Reinhard Hohlfeld: Institute of Clinical Neuroimmunology, Biomedical Center and Hospital.
  11. Klaus Dornmair: Institute of Clinical Neuroimmunology, Biomedical Center and Hospital.

Abstract

Multiple sclerosis (MS) is a disabling disease of the CNS. Inflammatory features of MS include lymphocyte accumulations in the CNS and cerebrospinal fluid (CSF). The preclinical events leading to established MS are still enigmatic. Here we compared gene expression patterns of CSF cells from MS-discordant monozygotic twin pairs. Six "healthy" co-twins, who carry a maximal familial risk for developing MS, showed subclinical neuroinflammation (SCNI) with small MRI lesions. Four of these subjects had oligoclonal bands (OCBs). By single-cell RNA sequencing of 2752 CSF cells, we identified clonally expanded CD8+ T cells, plasmablasts, and, to a lesser extent, CD4+ T cells not only from MS patients but also from subjects with SCNI. In contrast to nonexpanded T cells, clonally expanded T cells showed characteristics of activated tissue-resident memory T (TRM) cells. The TRM-like phenotype was detectable already in cells from SCNI subjects but more pronounced in cells from patients with definite MS. Expanded plasmablast clones were detected only in MS and SCNI subjects with OCBs. Our data provide evidence for very early concomitant activation of 3 components of the adaptive immune system in MS, with a notable contribution of clonally expanded TRM-like CD8+ cells.

Keywords

References

  1. Nat Immunol. 2018 Jun;19(6):538-546 [PMID: 29777219]
  2. Brain. 2018 Jul 1;141(7):2066-2082 [PMID: 29873694]
  3. Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2428-33 [PMID: 14983026]
  4. J Immunol. 2005 Jan 1;174(1):277-83 [PMID: 15611250]
  5. Acta Neuropathol. 2017 Sep;134(3):383-401 [PMID: 28624961]
  6. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  7. Brain. 2005 Jul;128(Pt 7):1667-76 [PMID: 15800022]
  8. Science. 2017 Oct 6;358(6359):58-63 [PMID: 28983043]
  9. Cell Rep. 2017 Sep 19;20(12):2921-2934 [PMID: 28930685]
  10. J Invest Dermatol. 2012 Mar;132(3 Pt 1):626-34 [PMID: 22113484]
  11. Nat Commun. 2018 Nov 2;9(1):4593 [PMID: 30389931]
  12. Trends Immunol. 2017 Feb;38(2):140-149 [PMID: 28094102]
  13. Science. 2016 Apr 22;352(6284):459-63 [PMID: 27102484]
  14. Nat Med. 2008 Jun;14(6):688-93 [PMID: 18488038]
  15. Eur J Immunol. 2017 Jun;47(6):946-953 [PMID: 28475283]
  16. Lancet Neurol. 2018 Feb;17(2):162-173 [PMID: 29275977]
  17. Curr Opin Immunol. 2017 Dec;49:37-43 [PMID: 28926740]
  18. Nat Immunol. 2013 Dec;14(12):1285-93 [PMID: 24162775]
  19. Neurol Clin. 2018 Feb;36(1):59-68 [PMID: 29157404]
  20. PLoS One. 2015 May 22;10(5):e0128036 [PMID: 26000737]
  21. Mult Scler. 2018 Feb;24(2):214-221 [PMID: 29451440]
  22. Front Immunol. 2018 Nov 29;9:2810 [PMID: 30555481]
  23. Neurol Neuroimmunol Neuroinflamm. 2015 May 07;2(4):e107 [PMID: 25977934]
  24. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8389-94 [PMID: 12829791]
  25. Front Immunol. 2018 Jul 04;9:1553 [PMID: 30022984]
  26. Brain. 2014 Oct;137(Pt 10):2703-14 [PMID: 25060097]
  27. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  28. Arthritis Rheum. 2005 May;52(5):1381-91 [PMID: 15880344]
  29. Lancet Neurol. 2016 Feb;15(2):198-209 [PMID: 26724103]
  30. Front Immunol. 2015 Dec 24;6:636 [PMID: 26732544]
  31. Front Immunol. 2019 Jan 10;9:3116 [PMID: 30687321]
  32. J Autoimmun. 2019 Jun;100:1-6 [PMID: 30948158]
  33. Cytometry B Clin Cytom. 2011 Jan;80(1):43-50 [PMID: 20632412]
  34. Ann Clin Transl Neurol. 2015 Jun;2(6):609-22 [PMID: 26125037]
  35. Sci Transl Med. 2014 Aug 6;6(248):248ra106 [PMID: 25100740]
  36. Brain. 2007 Nov;130(Pt 11):2789-99 [PMID: 17890278]
  37. Trends Immunol. 2017 Feb;38(2):94-103 [PMID: 27939451]
  38. Sci Transl Med. 2014 Aug 6;6(248):248ra107 [PMID: 25100741]
  39. J Immunol. 2017 Oct 1;199(7):2451-2459 [PMID: 28855310]
  40. Nature. 2004 Jan 22;427(6972):355-60 [PMID: 14737169]
  41. N Engl J Med. 2018 Jan 11;378(2):169-180 [PMID: 29320652]
  42. Nat Rev Immunol. 2012 Sep;12(9):623-35 [PMID: 22903150]
  43. Ann Rheum Dis. 2009 Jun;68(6):1036-43 [PMID: 18628285]
  44. Nat Rev Immunol. 2018 Jan;18(1):35-45 [PMID: 28787399]
  45. Brain. 2005 Aug;128(Pt 8):1747-63 [PMID: 15975943]
  46. Lancet Neurol. 2016 Mar;15(3):317-31 [PMID: 26724102]
  47. Nat Med. 2015 Jul;21(7):688-97 [PMID: 26121195]
  48. J Exp Med. 2000 Aug 7;192(3):393-404 [PMID: 10934227]
  49. Brain. 2001 Mar;124(Pt 3):480-92 [PMID: 11222448]
  50. Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7864-9 [PMID: 27325759]

MeSH Term

Adult
Aged
CD4-Positive T-Lymphocytes
CD8-Positive T-Lymphocytes
Female
Humans
Inflammation
Lymphocyte Activation
Male
Middle Aged
Multiple Sclerosis
Risk Factors
Twins, Monozygotic