The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis.

Lisong Hu, Zhongping Xu, Maojun Wang, Rui Fan, Daojun Yuan, Baoduo Wu, Huasong Wu, Xiaowei Qin, Lin Yan, Lehe Tan, Soonliang Sim, Wen Li, Christopher A Saski, Henry Daniell, Jonathan F Wendel, Keith Lindsey, Xianlong Zhang, Chaoyun Hao, Shuangxia Jin
Author Information
  1. Lisong Hu: Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
  2. Zhongping Xu: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. ORCID
  3. Maojun Wang: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. ORCID
  4. Rui Fan: Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
  5. Daojun Yuan: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. ORCID
  6. Baoduo Wu: Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
  7. Huasong Wu: Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
  8. Xiaowei Qin: Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
  9. Lin Yan: Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
  10. Lehe Tan: Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
  11. Soonliang Sim: Academy of Sciences Malaysia, Kuala Lumpur, 50480, Malaysia.
  12. Wen Li: Department of Plant & Environmental Science, Clemson University, Clemson, SC, 29631, USA.
  13. Christopher A Saski: Department of Plant & Environmental Science, Clemson University, Clemson, SC, 29631, USA.
  14. Henry Daniell: Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
  15. Jonathan F Wendel: Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA. ORCID
  16. Keith Lindsey: Department of Biosciences, Durham University, Durham, DH1 3LE, UK. ORCID
  17. Xianlong Zhang: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. ORCID
  18. Chaoyun Hao: Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China. cyhao_catas@163.com.
  19. Shuangxia Jin: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. jsx@mail.hzau.edu.cn.

Abstract

Black pepper (Piper nigrum), dubbed the 'King of Spices' and 'Black Gold', is one of the most widely used spices. Here, we present its reference genome assembly by integrating PacBio, 10x Chromium, BioNano DLS optical mapping, and Hi-C mapping technologies. The 761.2 Mb sequences (45 scaffolds with an N50 of 29.8 Mb) are assembled into 26 pseudochromosomes. A phylogenomic analysis of representative plant genomes places magnoliids as sister to the monocots-eudicots clade and indicates that black pepper has diverged from the shared Laurales-Magnoliales lineage approximately 180 million years ago. Comparative genomic analyses reveal specific gene expansions in the glycosyltransferase, cytochrome P450, shikimate hydroxycinnamoyl transferase, lysine decarboxylase, and acyltransferase gene families. Comparative transcriptomic analyses disclose berry-specific upregulated expression in representative genes in each of these gene families. These data provide an evolutionary perspective and shed light on the metabolic processes relevant to the molecular basis of species-specific piperine biosynthesis.

References

  1. Plant Cell Rep. 2011 May;30(5):695-706 [PMID: 21161234]
  2. BMC Bioinformatics. 2013 Nov 12;14:321 [PMID: 24219505]
  3. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  4. J Biol Chem. 2003 Jan 3;278(1):95-103 [PMID: 12381722]
  5. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  6. Bioinformatics. 2016 Mar 1;32(5):767-9 [PMID: 26559507]
  7. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  8. Plant Cell. 2004 Jun;16(6):1446-65 [PMID: 15161961]
  9. Nat Protoc. 2016 Sep;11(9):1650-67 [PMID: 27560171]
  10. Nature. 2007 Sep 27;449(7161):463-7 [PMID: 17721507]
  11. Syst Biol. 2007 Aug;56(4):564-77 [PMID: 17654362]
  12. New Phytol. 2015 Nov;208(3):695-707 [PMID: 26053460]
  13. New Phytol. 2018 Sep;219(4):1170-1187 [PMID: 29577323]
  14. Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80 [PMID: 20451164]
  15. Phytother Res. 2013 Aug;27(8):1121-30 [PMID: 23625885]
  16. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  17. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  18. Bioinformatics. 2010 Oct 1;26(19):2455-7 [PMID: 20671151]
  19. Nature. 2017 Jun 1;546(7656):148-152 [PMID: 28538728]
  20. Science. 2018 Oct 19;362(6412):343-347 [PMID: 30166436]
  21. Mol Biol Evol. 2005 May;22(5):1208-22 [PMID: 15703242]
  22. Curr Opin Plant Biol. 2016 Apr;30:134-42 [PMID: 26985732]
  23. Nat Plants. 2019 Jan;5(1):63-73 [PMID: 30626928]
  24. Bioinformatics. 2007 May 1;23(9):1061-7 [PMID: 17332020]
  25. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  26. Nat Plants. 2019 Jan;5(1):6-7 [PMID: 30626927]
  27. Nucleic Acids Res. 2017 Jul 3;45(W1):W55-W63 [PMID: 28453650]
  28. Bioinformatics. 2006 Dec 15;22(24):3096-8 [PMID: 17110367]
  29. Science. 2013 Dec 20;342(6165):1456-7 [PMID: 24357306]
  30. Am J Bot. 2001 Apr;88(4):706-16 [PMID: 11302858]
  31. Syst Biol. 2018 Jan 1;67(1):170-174 [PMID: 28673048]
  32. Science. 2014 Sep 5;345(6201):1181-4 [PMID: 25190796]
  33. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  34. Bioinformatics. 2010 Apr 1;26(7):873-81 [PMID: 20147302]
  35. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  36. Chem Biol Drug Des. 2016 Sep;88(3):354-62 [PMID: 27037532]
  37. Bioinformatics. 2005 May 1;21(9):1859-75 [PMID: 15728110]
  38. Genome Res. 2006 Jun;16(6):738-49 [PMID: 16702410]
  39. Nature. 2012 May 30;485(7400):635-41 [PMID: 22660326]
  40. Nature. 2011 May 5;473(7345):97-100 [PMID: 21478875]
  41. PLoS Genet. 2012;8(7):e1002764 [PMID: 22807683]
  42. Mol Plant. 2017 Jul 5;10(7):975-989 [PMID: 28552780]
  43. Genome Res. 2014 Dec;24(12):2041-9 [PMID: 25327137]
  44. Nat Commun. 2014 Sep 24;5:4956 [PMID: 25249442]
  45. IEEE/ACM Trans Comput Biol Bioinform. 2013 May-Jun;10(3):645-56 [PMID: 24091398]
  46. Plant Physiol. 1997 Mar;113(3):951-959 [PMID: 12223655]
  47. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  48. Plant Cell. 2012 Mar;24(3):1202-16 [PMID: 22415272]
  49. Nat Methods. 2016 Dec;13(12):1050-1054 [PMID: 27749838]
  50. Bioinformatics. 2006 May 15;22(10):1269-71 [PMID: 16543274]
  51. Nat Plants. 2019 May;5(5):461-470 [PMID: 31061536]
  52. Curr Med Chem. 2018;25(37):4918-4928 [PMID: 28545378]
  53. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  54. F1000Res. 2015 Nov 20;4:1310 [PMID: 26835000]
  55. Nat Methods. 2013 Jun;10(6):563-9 [PMID: 23644548]
  56. Int J Mol Sci. 2017 Aug 24;18(9): [PMID: 28837061]
  57. Nat Rev Genet. 2012 Apr 18;13(5):329-42 [PMID: 22510764]
  58. Nat Plants. 2019 Jan;5(1):18-25 [PMID: 30559417]

MeSH Term

Acyltransferases
Alkaloids
Benzodioxoles
Carboxy-Lyases
Chromosome Mapping
Chromosomes
Cytochrome P-450 Enzyme System
Gene Expression Profiling
Genome, Plant
Genomics
Glycosyltransferases
Phylogeny
Piper nigrum
Piperidines
Polyunsaturated Alkamides

Chemicals

Alkaloids
Benzodioxoles
Piperidines
Polyunsaturated Alkamides
Cytochrome P-450 Enzyme System
Acyltransferases
Glycosyltransferases
Carboxy-Lyases
lysine decarboxylase
piperine

Word Cloud

Similar Articles

Cited By