Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease.

Peter A Szabo, Hanna Mendes Levitin, Michelle Miron, Mark E Snyder, Takashi Senda, Jinzhou Yuan, Yim Ling Cheng, Erin C Bush, Pranay Dogra, Puspa Thapa, Donna L Farber, Peter A Sims
Author Information
  1. Peter A Szabo: Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA. ORCID
  2. Hanna Mendes Levitin: Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
  3. Michelle Miron: Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
  4. Mark E Snyder: Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
  5. Takashi Senda: Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
  6. Jinzhou Yuan: Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
  7. Yim Ling Cheng: Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
  8. Erin C Bush: Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
  9. Pranay Dogra: Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
  10. Puspa Thapa: Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
  11. Donna L Farber: Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA. df2396@cumc.columbia.edu. ORCID
  12. Peter A Sims: Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA. pas2182@cumc.columbia.edu. ORCID

Abstract

Human T cells coordinate adaptive immunity in diverse anatomic compartments through production of cytokines and effector molecules, but it is unclear how tissue site influences T cell persistence and function. Here, we use single cell RNA-sequencing (scRNA-seq) to define the heterogeneity of human T cells isolated from lungs, lymph nodes, bone marrow and blood, and their functional responses following stimulation. Through analysis of >50,000 resting and activated T cells, we reveal tissue T cell signatures in mucosal and lymphoid sites, and lineage-specific activation states across all sites including distinct effector states for CD8 T cells and an interferon-response state for CD4 T cells. Comparing scRNA-seq profiles of tumor-associated T cells to our dataset reveals predominant activated CD8 compared to CD4 T cell states within multiple tumor types. Our results therefore establish a high dimensional reference map of human T cell activation in health for analyzing T cells in disease.

References

  1. Immunity. 2017 Feb 21;46(2):287-300 [PMID: 28214226]
  2. Cell. 2019 Feb 7;176(4):775-789.e18 [PMID: 30595452]
  3. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20410-5 [PMID: 19074257]
  4. Curr Opin Virol. 2011 Dec;1(6):519-25 [PMID: 22328912]
  5. Immunity. 2011 Aug 26;35(2):161-8 [PMID: 21867926]
  6. Immunity. 2002 Nov;17(5):605-15 [PMID: 12433367]
  7. Naunyn Schmiedebergs Arch Pharmacol. 2011 Oct;384(4-5):421-31 [PMID: 21562815]
  8. Nature. 2006 Feb 9;439(7077):682-7 [PMID: 16382236]
  9. Science. 2003 Nov 7;302(5647):1041-3 [PMID: 14605368]
  10. J Immunol. 2017 Jul 1;199(1):233-243 [PMID: 28533445]
  11. Elife. 2017 Dec 05;6: [PMID: 29206104]
  12. Nat Immunol. 2011 Jun;12(6):492-9 [PMID: 21739672]
  13. Nat Immunol. 2009 Jan;10(1):29-37 [PMID: 19043418]
  14. Mol Syst Biol. 2018 Apr 16;14(4):e8046 [PMID: 29661792]
  15. J Immunol. 2011 Dec 1;187(11):5510-4 [PMID: 22058417]
  16. Cell. 2018 Nov 1;175(4):998-1013.e20 [PMID: 30388456]
  17. Science. 2017 Oct 6;358(6359):58-63 [PMID: 28983043]
  18. Cell Rep. 2017 Sep 19;20(12):2921-2934 [PMID: 28930685]
  19. Annu Rev Immunol. 2019 Apr 26;37:457-495 [PMID: 30676822]
  20. J Exp Med. 2003 Dec 15;198(12):1797-806 [PMID: 14662907]
  21. Nat Med. 2016 Jul;22(7):754-61 [PMID: 27239760]
  22. Nat Med. 2016 Jan;22(1):72-7 [PMID: 26657141]
  23. Cell. 2002 Dec 13;111(6):837-51 [PMID: 12526810]
  24. Immunity. 2007 Sep;27(3):393-405 [PMID: 17892848]
  25. Nature. 1999 Oct 14;401(6754):708-12 [PMID: 10537110]
  26. Cell. 2018 Aug 23;174(5):1293-1308.e36 [PMID: 29961579]
  27. Science. 2016 Apr 22;352(6284):459-63 [PMID: 27102484]
  28. Nat Commun. 2018 Jul 10;9(1):2667 [PMID: 29991676]
  29. Nat Rev Immunol. 2014 Jan;14(1):24-35 [PMID: 24336101]
  30. Sci Immunol. 2016 Dec;1(6): [PMID: 28361127]
  31. JCI Insight. 2018 Nov 15;3(22): [PMID: 30429372]
  32. J Exp Med. 1998 Dec 21;188(12):2205-13 [PMID: 9858507]
  33. N Engl J Med. 2015 Jan 22;372(4):320-30 [PMID: 25399552]
  34. Nature. 2008 Jul 17;454(7202):350-2 [PMID: 18469800]
  35. Am J Hematol. 2004 Mar;75(3):128-33 [PMID: 14978691]
  36. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8732-7 [PMID: 11447288]
  37. Science. 2014 Oct 3;346(6205):98-101 [PMID: 25170049]
  38. J Exp Med. 2015 Nov 16;212(12):2041-56 [PMID: 26503446]
  39. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8372-7 [PMID: 12826605]
  40. Nat Methods. 2019 Aug;16(8):695-698 [PMID: 31308548]
  41. Nat Immunol. 2016 Dec;17(12):1467-1478 [PMID: 27776108]
  42. Nat Methods. 2018 May;15(5):359-362 [PMID: 29608555]
  43. Nat Biotechnol. 2019 Jun;37(6):685-691 [PMID: 31061482]
  44. Cell. 2014 Nov 6;159(4):814-28 [PMID: 25417158]
  45. Nat Methods. 2018 Dec;15(12):1053-1058 [PMID: 30504886]
  46. PLoS Pathog. 2016 Jul 14;12(7):e1005761 [PMID: 27415008]
  47. Immunity. 2007 Oct;27(4):670-84 [PMID: 17950003]
  48. Am J Transplant. 2018 Jan;18(1):74-88 [PMID: 28719147]
  49. Cell. 2016 Aug 25;166(5):1308-1323.e30 [PMID: 27565351]
  50. Immunity. 2016 Nov 15;45(5):1135-1147 [PMID: 27851914]
  51. J Immunol. 2018 Oct 1;201(7):2132-2140 [PMID: 30111633]
  52. Cell. 2015 Jul 2;162(1):184-97 [PMID: 26095251]
  53. Trends Immunol. 2007 Dec;28(12):514-8 [PMID: 17964854]
  54. Immunity. 2014 Dec 18;41(6):886-97 [PMID: 25526304]
  55. JCI Insight. 2018 Dec 6;3(23): [PMID: 30518681]
  56. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  57. Immunity. 2013 Jan 24;38(1):187-97 [PMID: 23260195]
  58. F1000Res. 2016 Aug 31;5:2122 [PMID: 27909575]
  59. Front Oncol. 2018 Oct 05;8:430 [PMID: 30345255]
  60. Mol Syst Biol. 2019 Feb 22;15(2):e8557 [PMID: 30796088]
  61. Nat Methods. 2017 Sep 29;14(10):935-936 [PMID: 28960196]
  62. Genome Biol. 2016 Apr 27;17:75 [PMID: 27122128]
  63. Nat Immunol. 2013 Dec;14(12):1294-301 [PMID: 24162776]
  64. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  65. Nat Immunol. 2018 Mar;19(3):291-301 [PMID: 29434354]
  66. Nature. 2018 Dec;564(7735):268-272 [PMID: 30479382]
  67. Nat Med. 2018 Aug;24(8):1277-1289 [PMID: 29988129]
  68. Immunity. 2017 Mar 21;46(3):504-515 [PMID: 28329707]
  69. J Invest Dermatol. 2016 May;136(5):905-911 [PMID: 27017330]
  70. Transl Oncol. 2016 Feb;9(1):32-40 [PMID: 26947879]
  71. Immunity. 2018 Feb 20;48(2):202-213 [PMID: 29466753]
  72. Nat Rev Immunol. 2018 Jan;18(1):35-45 [PMID: 28787399]
  73. Nat Immunol. 2018 Feb;19(2):183-191 [PMID: 29311695]
  74. Curr Opin Immunol. 2012 Jun;24(3):297-302 [PMID: 22341735]
  75. Trends Cancer. 2018 Apr;4(4):264-268 [PMID: 29606308]
  76. Genome Med. 2018 Jul 24;10(1):57 [PMID: 30041684]
  77. Annu Rev Immunol. 2014;32:513-45 [PMID: 24555472]
  78. Science. 2015 Apr 3;348(6230):56-61 [PMID: 25838373]
  79. Science. 1991 Oct 11;254(5029):279-82 [PMID: 1681588]
  80. Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12363-E12369 [PMID: 30530648]

Grants

  1. P01 AI106697/NIAID NIH HHS
  2. T32 AI106711/NIAID NIH HHS
  3. T32 GM008224/NIGMS NIH HHS
  4. U19 AI128949/NIAID NIH HHS

MeSH Term

CD4-Positive T-Lymphocytes
CD8-Positive T-Lymphocytes
Cells, Cultured
Humans
Lung
Lymph Nodes
Lymphocyte Activation
Mucous Membrane
Neoplasms
Single-Cell Analysis
T-Lymphocytes
Transcriptome