Population and single‑cell transcriptome analyses reveal diverse transcriptional changes associated with radioresistance in esophageal squamous cell carcinoma.

Hongjin Wu, Juehua Yu, Deshengyue Kong, Yu Xu, Zunyue Zhang, Jing Shui, Ziwei Li, Huayou Luo, Kunhua Wang
Author Information
  1. Hongjin Wu: NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
  2. Juehua Yu: NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
  3. Deshengyue Kong: Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
  4. Yu Xu: NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
  5. Zunyue Zhang: NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
  6. Jing Shui: Shanghai International Travel Healthcare Center, Shanghai 200000, P.R. China.
  7. Ziwei Li: NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
  8. Huayou Luo: Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
  9. Kunhua Wang: NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.

Abstract

Esophageal squamous cell carcinoma (ESCC) is a tumor composed of heterogeneous cells that easily become radioresistant, which leads to tumor recurrence. The most commonly used treatment for ESCC is fractionated irradiation (FIR) therapy that utilizes ionizing radiation to directly induce cytotoxic cell death. However, this treatment may not be able to eliminate all cancer cells due to high adaptive evolution. To determine whether the transcriptome dynamics during ESCC recurrence formation are associated with FIR response, an in vitro cell culture model for ESCC radioresistance that mimics the common radiotherapy process in patients with ESCC was established in the present study. High‑throughput sequencing analysis of in vitro cultured ESCC cells was performed using different cumulative irradiation doses, as well as tumor samples from FIR‑treated patients with ESCC before and after the development of radioresistance. Radioresistance‑associated genes and signaling pathways that were aberrantly expressed in radioresistant ESCC cells were identified, including autophagy‑related 9B (regulation of autophagy), DNA damage‑inducible transcript 4, myoglobin and plasminogen activator tissue type, which are associated with response to hypoxia, Bcl2‑binding component 3, tumor protein P63 and interferon γ‑inducible protein 16, which are associated with DNA damage response. The heterogeneity and dynamic gene expression of ESCC cells during acquired radioresistance were further studied in primary (41 single cells), 12 Gy FIR‑treated (87 single cells) and 30 Gy FIR‑treated (89 single cells) cancer cells using a single‑cell RNA sequencing approach. The results of the present study comprehensively characterized the transcriptome dynamics during acquired radioresistance in an in vitro model of ESCC and patient tumor samples at the population and single cell level. Single‑cell RNA sequencing revealed the heterogeneity of irradiated ESCC cells and an increase in the radioresistant ESCC cell subpopulation during acquired radioresistance. Overall, these results are of potential clinical relevance as they identify a number of signaling molecules associated with radioresistance, as well as opportunities for the development of novel therapeutic options for the treatment of ESCC.

References

  1. Tumour Biol. 2016 Mar;37(3):4025-33 [PMID: 26482776]
  2. Oral Dis. 2015 Apr;21(3):283-91 [PMID: 24797102]
  3. Biol Proced Online. 2013 Feb 13;15(1):4 [PMID: 23406336]
  4. Mamm Genome. 2007 Jul;18(6-7):463-72 [PMID: 17668265]
  5. Cancer Res. 2016 Nov 1;76(21):6351-6361 [PMID: 27590741]
  6. Asian Pac J Cancer Prev. 2012;13(10):5003-6 [PMID: 23244099]
  7. Pflugers Arch. 2016 Nov;468(11-12):1865-1875 [PMID: 27752766]
  8. Oncotarget. 2015 Jun 10;6(16):14233-46 [PMID: 26008968]
  9. Nat Med. 2003 May;9(5):568-74 [PMID: 12692539]
  10. J Cancer. 2016 Oct 23;7(14):2085-2092 [PMID: 27877224]
  11. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  12. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  13. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  14. BMC Cancer. 2006 Jul 31;6:201 [PMID: 16879751]
  15. Tumour Biol. 2015 Jun;36(6):4079-87 [PMID: 25946972]
  16. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  17. Mol Cell. 2015 May 21;58(4):610-20 [PMID: 26000846]
  18. Nat Methods. 2013 Nov;10(11):1096-8 [PMID: 24056875]
  19. PLoS One. 2012;7(11):e49987 [PMID: 23185507]
  20. Cancer Gene Ther. 2016 Feb-Mar;23(2-3):61-5 [PMID: 26915404]
  21. Asian Pac J Cancer Prev. 2011;12(7):1821-6 [PMID: 22126573]
  22. Tumour Biol. 2016 Oct;37(10):14217-14224 [PMID: 27557627]
  23. CA Cancer J Clin. 2016 Jan-Feb;66(1):75-88 [PMID: 26528881]
  24. Oncol Rep. 2016 Jan;35(1):409-17 [PMID: 26530439]
  25. Biochem Biophys Res Commun. 2014 Jan 3;443(1):49-55 [PMID: 24269823]
  26. Crit Rev Oncol Hematol. 2015 Dec;96(3):507-17 [PMID: 26253360]
  27. PLoS One. 2010 Feb 02;5(2):e9024 [PMID: 20126311]
  28. Nat Methods. 2014 Jul;11(7):740-2 [PMID: 24836921]
  29. Oncogene. 2017 May 18;36(20):2857-2867 [PMID: 27941887]
  30. BMC Cancer. 2015 Sep 09;15:628 [PMID: 26353782]
  31. Oncotarget. 2016 Dec 6;7(49):80888-80900 [PMID: 27825133]
  32. Int J Cancer. 1996 Jan 26;65(3):372-6 [PMID: 8575860]
  33. Radiat Oncol. 2016 Jul 26;11:94 [PMID: 27455841]
  34. Am J Cancer Res. 2015 Sep 15;5(10):2959-68 [PMID: 26693052]
  35. Cancer Control. 1999 Jan;6(1):53-62 [PMID: 10758535]
  36. Radiother Oncol. 2009 Dec;93(3):468-73 [PMID: 19744737]
  37. Bioinformatics. 2015 Oct 15;31(20):3380-2 [PMID: 26099264]
  38. Sci Rep. 2014 Jul 07;4:5596 [PMID: 24998208]
  39. Cell Death Differ. 2015 May;22(5):779-89 [PMID: 25323586]
  40. Cancer Lett. 2018 Dec 1;438:133-143 [PMID: 30223068]
  41. Cell. 2016 Nov 17;167(5):1281-1295.e18 [PMID: 27863244]
  42. Clin Cancer Res. 2011 Nov 15;17(22):7194-203 [PMID: 21933890]
  43. Cancer Res. 2014 Dec 1;74(23):6925-34 [PMID: 25277523]
  44. Int J Radiat Biol. 2014 Aug;90(8):636-52 [PMID: 24844374]
  45. Medsurg Nurs. 2000 Oct;9(5):248-54 [PMID: 11904904]
  46. BMC Syst Biol. 2008 Nov 06;2:95 [PMID: 18986552]
  47. Front Oncol. 2016 Jul 22;6:175 [PMID: 27500125]
  48. Sci Rep. 2016 Oct 05;6:34796 [PMID: 27703211]
  49. Ukr Biochem J. 2014 Jul-Aug;86(4):79-89 [PMID: 25509186]
  50. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  51. Genet Test Mol Biomarkers. 2017 Feb;21(2):74-79 [PMID: 28051879]
  52. Nature. 2014 May 1;509(7498):91-5 [PMID: 24670651]
  53. Stat Appl Genet Mol Biol. 2005;4:Article17 [PMID: 16646834]
  54. Chin Med J (Engl). 2008 Sep 20;121(18):1830-7 [PMID: 19080366]
  55. Nat Rev Cancer. 2011 Jun;11(6):393-410 [PMID: 21606941]
  56. Oncotarget. 2017 Feb 14;8(7):11827-11840 [PMID: 28055969]
  57. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  58. Oncotarget. 2017 Jan 24;8(4):5735-5752 [PMID: 27974696]
  59. Biochem Cell Biol. 2016 Jun;94(3):213-20 [PMID: 26999331]
  60. Int J Cancer. 1994 Jul 15;58(2):291-7 [PMID: 7913084]
  61. Genome Biol. 2015 Apr 03;16:66 [PMID: 25887790]
  62. J Oral Pathol Med. 2017 Sep;46(8):583-590 [PMID: 27935117]
  63. EMBO Rep. 2009 Dec;10(12):1341-7 [PMID: 19820692]
  64. Appl Immunohistochem Mol Morphol. 2017 Sep;25(8):553-558 [PMID: 26945445]
  65. Oncogene. 2016 Feb 4;35(5):621-30 [PMID: 25915848]

MeSH Term

Cell Line, Tumor
DNA Damage
DNA Repair
Dose Fractionation, Radiation
Esophageal Neoplasms
Esophageal Squamous Cell Carcinoma
Esophagus
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Humans
Male
Middle Aged
Neoplasm Recurrence, Local
Primary Cell Culture
RNA-Seq
Radiation Tolerance
Signal Transduction
Single-Cell Analysis
Up-Regulation