The molecular landscape of ETMR at diagnosis and relapse.

Sander Lambo, Susanne N Gröbner, Tobias Rausch, Sebastian M Waszak, Christin Schmidt, Aparna Gorthi, July Carolina Romero, Monika Mauermann, Sebastian Brabetz, Sonja Krausert, Ivo Buchhalter, Jan Koster, Danny A Zwijnenburg, Martin Sill, Jens-Martin Hübner, Norman Mack, Benjamin Schwalm, Marina Ryzhova, Volker Hovestadt, Simon Papillon-Cavanagh, Jennifer A Chan, Pablo Landgraf, Ben Ho, Till Milde, Olaf Witt, Jonas Ecker, Felix Sahm, David Sumerauer, David W Ellison, Brent A Orr, Anna Darabi, Christine Haberler, Dominique Figarella-Branger, Pieter Wesseling, Jens Schittenhelm, Marc Remke, Michael D Taylor, Maria J Gil-da-Costa, Maria Łastowska, Wiesława Grajkowska, Martin Hasselblatt, Peter Hauser, Torsten Pietsch, Emmanuelle Uro-Coste, Franck Bourdeaut, Julien Masliah-Planchon, Valérie Rigau, Sanda Alexandrescu, Stephan Wolf, Xiao-Nan Li, Ulrich Schüller, Matija Snuderl, Matthias A Karajannis, Felice Giangaspero, Nada Jabado, Andreas von Deimling, David T W Jones, Jan O Korbel, Katja von Hoff, Peter Lichter, Annie Huang, Alexander J R Bishop, Stefan M Pfister, Andrey Korshunov, Marcel Kool
Author Information
  1. Sander Lambo: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  2. Susanne N Gröbner: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  3. Tobias Rausch: European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
  4. Sebastian M Waszak: European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
  5. Christin Schmidt: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  6. Aparna Gorthi: Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA.
  7. July Carolina Romero: Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA.
  8. Monika Mauermann: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  9. Sebastian Brabetz: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  10. Sonja Krausert: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  11. Ivo Buchhalter: Omics IT and Data Management Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  12. Jan Koster: Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands.
  13. Danny A Zwijnenburg: Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands.
  14. Martin Sill: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  15. Jens-Martin Hübner: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  16. Norman Mack: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  17. Benjamin Schwalm: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  18. Marina Ryzhova: Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia.
  19. Volker Hovestadt: Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  20. Simon Papillon-Cavanagh: Department of Pediatrics, McGill University Health Center, McGill University, Montreal, Quebec, Canada.
  21. Jennifer A Chan: Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada.
  22. Pablo Landgraf: Department of Pediatrics, Pediatric Oncology and Hematology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
  23. Ben Ho: Division of Hematology/Oncology Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
  24. Till Milde: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  25. Olaf Witt: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  26. Jonas Ecker: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  27. Felix Sahm: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  28. David Sumerauer: Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic.
  29. David W Ellison: Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA.
  30. Brent A Orr: Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA.
  31. Anna Darabi: Department of Clinical Sciences Lund, Section of Neurosurgery, Faculty of Medicine, Lund University, Lund, Sweden.
  32. Christine Haberler: Institute of Neurology, Medical University of Vienna, Vienna, Austria.
  33. Dominique Figarella-Branger: Aix-Marseille University, Neurophysiopathology Institute (INP), CNRS, Marseille, France.
  34. Pieter Wesseling: Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
  35. Jens Schittenhelm: Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany.
  36. Marc Remke: German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
  37. Michael D Taylor: Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
  38. Maria J Gil-da-Costa: Pediatric Hematology and Oncology Division, University Hospital São João Alameda Hernani Monteiro, Porto, Portugal.
  39. Maria Łastowska: Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland.
  40. Wiesława Grajkowska: Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland.
  41. Martin Hasselblatt: Institute of Neuropathology, University Hospital Münster, Münster, Germany.
  42. Peter Hauser: 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary.
  43. Torsten Pietsch: Institute of Neuropathology, Brain Tumor Reference Center of the German Society of Neuropathology and Neuroanatomy, University of Bonn Medical Center, Bonn, Germany.
  44. Emmanuelle Uro-Coste: Department of Pathology, Toulouse University Hospital, Toulouse, France.
  45. Franck Bourdeaut: INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Paris Sciences Lettres Research University, Curie Institute, Paris, France.
  46. Julien Masliah-Planchon: Pediatric Oncology Department, SIREDO Pediatric Oncology Centre, Curie Institute, Paris, France.
  47. Valérie Rigau: Department of Pathology, Montpellier University Medical Center, Montpellier, France.
  48. Sanda Alexandrescu: Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
  49. Stephan Wolf: Genomics and Proteomics Core Facility, High Throughput Sequencing Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  50. Xiao-Nan Li: Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
  51. Ulrich Schüller: Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.
  52. Matija Snuderl: Department of Pathology, NYU Langone Health, New York, NY, USA.
  53. Matthias A Karajannis: Division of Pediatric Hematology/Oncology, NYU Langone Medical Center, The Stephen D. Hassenfeld Children's Center for Cancer and Blood Disorders, New York, NY, USA.
  54. Felice Giangaspero: Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy.
  55. Nada Jabado: Department of Pediatrics, McGill University Health Center, McGill University, Montreal, Quebec, Canada.
  56. Andreas von Deimling: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  57. David T W Jones: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  58. Jan O Korbel: European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
  59. Katja von Hoff: Department of Pediatric Oncology/Hematology, Charité University Medicine, Berlin, Germany.
  60. Peter Lichter: German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
  61. Annie Huang: Division of Hematology/Oncology Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
  62. Alexander J R Bishop: Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA.
  63. Stefan M Pfister: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
  64. Andrey Korshunov: Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
  65. Marcel Kool: Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany. m.kool@dkfz.de.

Abstract

Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.

References

Korshunov, A. et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol. 128, 279–289 (2014). [PMID: 24337497]
Pfister, S. et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol. 117, 457–464 (2009). [PMID: 19057917]
Li, M. et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16, 533–546 (2009). [PMID: 19962671]
Kleinman, C. L. et al. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat. Genet. 46, 39–44 (2014). [PMID: 24316981]
Eberhart, C. G., Brat, D. J., Cohen, K. J. & Burger, P. C. Pediatric neuroblastic brain tumors containing abundant neuropil and true rosettes. Pediatr. Dev. Pathol. 3, 346–352 (2000). [PMID: 10890250]
Sturm, D. et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164, 1060–1072 (2016). [PMID: 26919435]
Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018). [PMID: 29539639]
Pearl, L. H., Schierz, A. C., Ward, S. E., Al-Lazikani, B. & Pearl, F. M. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer 15, 166–180 (2015). [PMID: 25709118]
Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015). [PMID: 25822800]
Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555, 524–528 (2018). [PMID: 29539641]
Neumann, J. E. et al. A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat. Med. 23, 1191–1202 (2017). [PMID: 28892064]
Anglesio, M. S. et al. Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse-strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage. J. Pathol. 229, 400–409 (2013). [PMID: 23132766]
Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). [PMID: 23945592]
Szikriszt, B. et al. A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome Biol. 17, 99 (2016). [PMID: 27161042]
Boot, A. et al. In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors. Genome Res. 28, 654–665 (2018). [PMID: 29632087]
Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015). [PMID: 26687355]
Santos-Pereira, J. M. & Aguilera, A. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16, 583–597 (2015). [PMID: 26370899]
El Hage, A., French, S. L., Beyer, A. L. & Tollervey, D. Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010). [PMID: 20634320]
Jenjaroenpun, P., Wongsurawat, T., Yenamandra, S. P. & Kuznetsov, V. A. QmRLFS-finder: a model, web server and stand-alone tool for prediction and analysis of R-loop forming sequences. Nucleic Acids Res. 43, W527–W534 (2015). [PMID: 25883153]
Gorthi, A. et al. EWS–FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 555, 387–391 (2018). [PMID: 29513652]
Kloosterman, W. P. et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 1, 648–655 (2012). [PMID: 22813740]
Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041–2056 (2011). [PMID: 21979917]
Lu, W. T. et al. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat. Commun. 9, 532 (2018). [PMID: 29416038]
Castel, S. E. et al. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 159, 572–583 (2014). [PMID: 25417108]
Francia, S. et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488, 231–235 (2012). [PMID: 22722852]
Schmidt, C. et al. Preclinical drug screen reveals topotecan, actinomycin D, and volasertib as potential new therapeutic candidates for ETMR brain tumor patients. Neuro Oncol. 19, 1607–1617 (2017). [PMID: 28482026]
Staker, B. L. et al. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl Acad. Sci. USA 99, 15387–15392 (2002). [PMID: 12426403]
Das, S. K. et al. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res. 44, 8363–8375 (2016). [PMID: 27466387]
Bennasser, Y. et al. Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels. Nat. Struct. Mol. Biol. 18, 323–327 (2011). [PMID: 21297638]
Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006). [PMID: 16724069]
Schultz, K. A. P. et al. PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin. Cancer Res. 23, e76–e82 (2017). [PMID: 28620008]
Seki, M. et al. Biallelic DICER1 mutations in sporadic pleuropulmonary blastoma. Cancer Res. 74, 2742–2749 (2014). [PMID: 24675358]
Koelsche, C. et al. Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations. Acta Neuropathol. 136, 327–337 (2018). [PMID: 29881993]
Hovestadt, V. et al. Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol. 125, 913–916 (2013). [PMID: 23670100]
Spence, T. et al. A novel C19MC amplified cell line links Lin28/let-7 to mTOR signaling in embryonal tumor with multilayered rosettes. Neuro Oncol. 16, 62–71 (2014). [PMID: 24311633]
Sahm, F. et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol. 131, 903–910 (2016). [PMID: 26671409]
Jones, D. T. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012). [PMID: 22832583]
Uro-Coste, E. et al. ETMR-like infantile cerebellar embryonal tumors in the extended morphologic spectrum of DICER1-related tumors. Acta Neuropathol. 137, 175–177 (2019). [PMID: 30446821]
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012). [PMID: 22257669]
van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). [PMID: 19505943]
Kool, M. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25, 393–405 (2014). [PMID: 24651015]
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010). [PMID: 20601685]
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014). [PMID: 24487276]
Waszak, S. M. et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 19, 785–798 (2018). [PMID: 29753700]
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012). [>PMCID: ]
Haradhvala, N. J. et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell 164, 538–549 (2016). [PMID: 26806129]
Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med. 10, 33 (2018). [PMID: 29695279]
Johann, P. D. et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29, 379–393 (2016). [PMID: 26923874]
Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014). [PMID: 4201514]
Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 (2009). [PMID: 19465376]
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
Wei, Q., Khan, I. K., Ding, Z., Yerneni, S. & Kihara, D. NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology. BMC Bioinformatics 18, 177 (2017). [PMID: 28320317]
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016). [PMID: 27043002]
Hovestadt, V. et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541 (2014). [PMID: 24847876]
Hafner, M. et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44, 3–12 (2008). [PMID: 18158127]
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). [PMID: 3218662]
Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014). [PMID: 24275495]
Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014). [PMID: 24799436]
Cer, R. Z. et al. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res. 41, D94–D100 (2013). [PMID: 23125372]
Korshunov, A. et al. Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol. 120, 253–260 (2010). [PMID: 20407781]
Sanz, L. A. et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016). [PMID: 27373332]
Chou, T. C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 70, 440–446 (2010).
Anderson, N. D. et al. Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science 361, eaam8419 (2018). [PMID: 30166462]

Grants

  1. R15 ES019128/NIEHS NIH HHS
  2. TL1 TR002647/NCATS NIH HHS
  3. T32 CA148724/NCI NIH HHS
  4. P30 CA054174/NCI NIH HHS
  5. K22 ES012264/NIEHS NIH HHS
  6. R01 CA152063/NCI NIH HHS

MeSH Term

DEAD-box RNA Helicases
DNA Topoisomerases, Type I
Humans
MicroRNAs
Mutation
Neoplasms, Germ Cell and Embryonal
Poly(ADP-ribose) Polymerase Inhibitors
Poly(ADP-ribose) Polymerases
Polymorphism, Single Nucleotide
RNA, Long Noncoding
Recurrence
Ribonuclease III

Chemicals

MIR17HG, human
MicroRNAs
Poly(ADP-ribose) Polymerase Inhibitors
RNA, Long Noncoding
Poly(ADP-ribose) Polymerases
DICER1 protein, human
Ribonuclease III
DEAD-box RNA Helicases
DNA Topoisomerases, Type I
TOP1 protein, human