Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization.

Chiara Baccin, Jude Al-Sabah, Lars Velten, Patrick M Helbling, Florian Grünschläger, Pablo Hernández-Malmierca, César Nombela-Arrieta, Lars M Steinmetz, Andreas Trumpp, Simon Haas
Author Information
  1. Chiara Baccin: Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. ORCID
  2. Jude Al-Sabah: Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany. ORCID
  3. Lars Velten: Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. lars.velten@embl.de. ORCID
  4. Patrick M Helbling: Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zürich, Switzerland. ORCID
  5. Florian Grünschläger: Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany. ORCID
  6. Pablo Hernández-Malmierca: Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany. ORCID
  7. César Nombela-Arrieta: Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zürich, Switzerland. ORCID
  8. Lars M Steinmetz: Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. larsms@embl.de. ORCID
  9. Andreas Trumpp: Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany. a.trumpp@dkfz-heidelberg.de. ORCID
  10. Simon Haas: Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany. s.haas@dkfz-heidelberg.de. ORCID

Abstract

The bone marrow constitutes the primary site for life-long blood production and skeletal regeneration. However, its cellular and spatial organization remains controversial. Here, we combine single-cell and spatially resolved transcriptomics to systematically map the molecular, cellular and spatial composition of distinct bone marrow niches. This allowed us to transcriptionally profile all major bone-marrow-resident cell types, determine their localization and clarify sources of pro-haematopoietic factors. Our data demonstrate that Cxcl12-abundant-reticular (CAR) cell subsets (Adipo-CAR and Osteo-CAR) differentially localize to sinusoidal and arteriolar surfaces, act locally as 'professional cytokine-secreting cells' and thereby establish peri-vascular micro-niches. Importantly, the three-dimensional bone-marrow organization can be accurately inferred from single-cell transcriptome data using the RNA-Magnet algorithm described here. Together, our study reveals the cellular and spatial organization of bone marrow niches and offers a systematic approach to dissect the complex organization of whole organs.

References

  1. Nature. 2019 May;569(7755):222-228 [PMID: 30971824]
  2. Nat Commun. 2018 Jun 22;9(1):2449 [PMID: 29934585]
  3. Nature. 2013 Oct 31;502(7473):637-43 [PMID: 24107994]
  4. G3 (Bethesda). 2018 Jan 4;8(1):79-89 [PMID: 29118030]
  5. Trends Immunol. 2013 Dec;34(12):602-9 [PMID: 23631936]
  6. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  7. Methods Mol Biol. 2018;1711:243-259 [PMID: 29344893]
  8. Nature. 2012 Jan 25;481(7382):457-62 [PMID: 22281595]
  9. Blood. 2016 Aug 25;128(8):e20-31 [PMID: 27365425]
  10. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  11. Physiology (Bethesda). 2016 May;31(3):233-45 [PMID: 27053737]
  12. Nat Commun. 2016 Jul 08;7:12139 [PMID: 27387371]
  13. Nat Commun. 2015 Jul 22;6:7866 [PMID: 26198319]
  14. Cell. 2015 Jan 15;160(1-2):269-84 [PMID: 25594183]
  15. Science. 2016 Jul 1;353(6294):78-82 [PMID: 27365449]
  16. Nature. 2018 Aug;560(7719):494-498 [PMID: 30089906]
  17. Science. 2015 Apr 24;348(6233):aaa6090 [PMID: 25858977]
  18. PLoS One. 2011;6(11):e27156 [PMID: 22110609]
  19. Annu Rev Cell Dev Biol. 2016 Oct 6;32:649-675 [PMID: 27576121]
  20. Dev Cell. 2014 May 12;29(3):330-9 [PMID: 24823376]
  21. Nature. 2018 Nov;563(7731):347-353 [PMID: 30429548]
  22. Science. 2017 Dec 22;358(6370):1622-1626 [PMID: 29217582]
  23. Dev Cell. 2018 Mar 12;44(5):634-641.e4 [PMID: 29456137]
  24. Cell Stem Cell. 2014 Aug 7;15(2):154-68 [PMID: 24953181]
  25. Cell Syst. 2016 Oct 26;3(4):346-360.e4 [PMID: 27667365]
  26. Cell Stem Cell. 2016 Oct 6;19(4):530-543 [PMID: 27524439]
  27. Nat Commun. 2017 Dec 11;8(1):2032 [PMID: 29230012]
  28. Blood. 2016 Mar 31;127(13):1701-10 [PMID: 26796360]
  29. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  30. Nature. 2017 Jun 22;546(7659):533-538 [PMID: 28614297]
  31. Front Cell Neurosci. 2012 Jul 05;6:28 [PMID: 22783168]
  32. Nature. 2013 Mar 14;495(7440):231-5 [PMID: 23434755]
  33. Nature. 2010 Aug 12;466(7308):829-34 [PMID: 20703299]
  34. Nat Rev Mol Cell Biol. 2017 Aug;18(8):477-494 [PMID: 28537573]
  35. Nat Methods. 2015 May;12(5):453-7 [PMID: 25822800]
  36. Cell. 2018 Nov 1;175(4):1031-1044.e18 [PMID: 30318149]
  37. Nature. 2014 Jan 16;505(7483):327-34 [PMID: 24429631]
  38. Nat Cell Biol. 2017 Apr;19(4):271-281 [PMID: 28319093]
  39. Cell. 2018 Jul 26;174(3):716-729.e27 [PMID: 29961576]
  40. Immunity. 2018 Oct 16;49(4):627-639.e6 [PMID: 30314756]
  41. Nat Methods. 2018 May;15(5):359-362 [PMID: 29608555]
  42. Science. 2014 Mar 21;343(6177):1360-3 [PMID: 24578530]
  43. Nature. 2013 Mar 14;495(7440):227-30 [PMID: 23434756]
  44. Immunity. 2016 Dec 20;45(6):1219-1231 [PMID: 27913094]
  45. Methods Mol Biol. 2018;1649:95-110 [PMID: 29130192]
  46. Nature. 2018 Mar 1;555(7694):54-60 [PMID: 29466336]
  47. Cell. 1996 Feb 9;84(3):345-57 [PMID: 8608588]
  48. Nat Commun. 2018 Jun 28;9(1):2532 [PMID: 29955044]
  49. Cold Spring Harb Perspect Biol. 2013 Sep 01;5(9): [PMID: 24003208]
  50. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  51. Cell. 2015 Dec 17;163(7):1663-77 [PMID: 26627738]
  52. Cell. 2015 Jan 15;160(1-2):285-98 [PMID: 25594184]
  53. Nat Cell Biol. 2017 Aug;19(8):891-903 [PMID: 28714970]
  54. Am J Nephrol. 2007;27(6):590-604 [PMID: 17823505]
  55. Cell. 2019 Jun 13;177(7):1915-1932.e16 [PMID: 31130381]
  56. Genome Biol. 2014 Feb 03;15(2):R29 [PMID: 24485249]
  57. Immunity. 2018 Apr 17;48(4):632-648 [PMID: 29669248]
  58. Nat Cell Biol. 2017 Mar;19(3):214-223 [PMID: 28218906]
  59. J Cell Sci. 2009 Jan 15;122(Pt 2):159-63 [PMID: 19118207]
  60. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  61. Nat Methods. 2016 Jan;13(1):87-93 [PMID: 26524239]
  62. Nature. 2016 Apr 21;532(7599):323-8 [PMID: 27074509]
  63. Nat Biotechnol. 2017 Dec;35(12):1202-1210 [PMID: 29131149]
  64. Immunity. 2010 Sep 24;33(3):387-99 [PMID: 20850355]
  65. Exp Cell Res. 2004 Mar 10;294(1):244-53 [PMID: 14980518]
  66. Nat Immunol. 2018 Jan;19(1):85-97 [PMID: 29167569]
  67. Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):466-471 [PMID: 30587579]
  68. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  69. Cancer Metastasis Rev. 2005 Sep;24(3):395-402 [PMID: 16258727]
  70. Immunity. 2006 Dec;25(6):977-88 [PMID: 17174120]

Grants

  1. 294542/European Research Council
  2. 742804/European Research Council
  3. P01 AG020752/NIA NIH HHS

MeSH Term

Animals
Bone Marrow
Bone Marrow Cells
Hematopoietic Stem Cells
Mesenchymal Stem Cells
Osteoblasts
Stem Cell Niche
Transcriptome