Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids.
Ali Motazedian, Freya F Bruveris, Santhosh V Kumar, Jacqueline V Schiesser, Tyrone Chen, Elizabeth S Ng, Ann P Chidgey, Christine A Wells, Andrew G Elefanty, Edouard G Stanley
Author Information
Ali Motazedian: Murdoch Children's Research Institute, Parkville, Victoria, Australia.
Freya F Bruveris: Murdoch Children's Research Institute, Parkville, Victoria, Australia.
Santhosh V Kumar: Murdoch Children's Research Institute, Parkville, Victoria, Australia.
Jacqueline V Schiesser: Murdoch Children's Research Institute, Parkville, Victoria, Australia.
Tyrone Chen: Centre for Stem Cell Systems, Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
Elizabeth S Ng: Murdoch Children's Research Institute, Parkville, Victoria, Australia.
Ann P Chidgey: Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
Christine A Wells: Centre for Stem Cell Systems, Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia. ORCID
Andrew G Elefanty: Murdoch Children's Research Institute, Parkville, Victoria, Australia.
Edouard G Stanley: Murdoch Children's Research Institute, Parkville, Victoria, Australia. ed.stanley@mcri.edu.au. ORCID
Defining the ontogeny of the human adaptive immune system during embryogenesis has implications for understanding childhood diseases including leukaemias and autoimmune conditions. Using RAG1:GFP human pluripotent stem cell reporter lines, we examined human T-cell genesis from pluripotent-stem-cell-derived haematopoietic organoids. Under conditions favouring T-cell development, RAG1+ cells progressively upregulated a cohort of recognized T-cell-associated genes, arresting development at the CD4+CD8+ stage. Sort and re-culture experiments showed that early RAG1+ cells also possessed B-cell, myeloid and erythroid potential. Flow cytometry and single-cell-RNA-sequencing data showed that early RAG1+ cells co-expressed the endothelial/haematopoietic progenitor markers CD34, VECAD and CD90, whereas imaging studies identified RAG1+ cells within CD31+ endothelial structures that co-expressed SOX17+ or the endothelial marker CAV1. Collectively, these observations provide evidence for a wave of human T-cell development that originates directly from haemogenic endothelium via a RAG1+ intermediate with multilineage potential.
References
Lin, Y., Yoder, M. C. & Yoshimoto, M. Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection. Stem Cells Dev. 23, 1168–1177 (2014).
[PMID: 24417306]
Tian, Y. et al. The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells. J. Exp. Med. 214, 3347–3360 (2017).
[PMID: 28931624]
Luis, T. C. et al. Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors. Nat. Immunol. 17, 1424–1435 (2016).
[PMID: 27695000]
Boiers, C. et al. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13, 535–548 (2013).
[PMID: 24054998]
Boiers, C. et al. A human IPS model implicates embryonic B-myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia-associated ETV6-RUNX1. Dev. Cell 44, 362–377 (2018).
[PMID: 29290585]
Ivanovs, A. et al. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J. Exp. Med. 208, 2417–2427 (2011).
[PMID: 22042975]
Bertrand, J. Y. & Traver, D. Hematopoietic cell development in the zebrafish embryo. Curr. Opin. Hematol. 16, 243–248 (2009).
[PMID: 19491671]
Chen, A. T. & Zon, L. I. Zebrafish blood stem cells. J. Cell. Biochem. 108, 35–42 (2009).
[PMID: 19565566]
Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996).
[PMID: 8808625]
Yoshimoto, M. et al. Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood 119, 5706–5714 (2012).
[PMID: 22431573]
Yoshimoto, M. et al. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc. Natl Acad. Sci. USA 108, 1468–1473 (2011).
[PMID: 21209332]
Godin, I., Dieterlen-Lièvre, F. & Cumano, A. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc. Natl Acad. Sci. USA 92, 773–777 (1995).
[PMID: 7846049]
Nishikawa, S. I. et al. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 8, 761–769 (1998).
[PMID: 9655490]
Kawamoto, H., Ikawa, T., Ohmura, K., Fujimoto, S. & Katsura, Y. T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity 12, 441–450 (2000).
[PMID: 10795742]
Ikawa, T. et al. Identification of the earliest prethymic T-cell progenitors in murine fetal blood. Blood 103, 530–537 (2004).
[PMID: 14512296]
Benz, C. & Bleul, C. C. A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision. J. Exp. Med. 202, 21–31 (2005).
[PMID: 15983065]
Yokota, T. et al. Tracing the first waves of lymphopoiesis in mice. Development 133, 2041–2051 (2006).
[PMID: 16611687]
Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).
[PMID: 1547488]
Ivanovs, A. et al. Human haematopoietic stem cell development: from the embryo to the dish. Development 144, 2323–2337 (2017).
[PMID: 28676567]
Tavian, M., Biasch, K., Sinka, L., Vallet, J. & Peault, B. Embryonic origin of human hematopoiesis. Int. J. Dev. Biol. 54, 1061–1065 (2010).
[PMID: 20711983]
Ditadi, A. et al. Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nat. Cell Biol. 17, 580–591 (2015).
[PMID: 25915127]
Sturgeon, C. M., Ditadi, A., Awong, G., Kennedy, M. & Keller, G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat. Biotechnol. 32, 554–561 (2014).
[PMID: 24837661]
Kennedy, M. et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep. 2, 1722–1735 (2012).
[PMID: 23219550]
Mohtashami, M. et al. Direct comparison of Dll1- and Dll4-mediated Notch activation levels shows differential lymphomyeloid lineage commitment outcomes. J. Immunol. 185, 867–876 (2010).
[PMID: 20548034]
Carpenter, L. et al. Human induced pluripotent stem cells are capable of B-cell lymphopoiesis. Blood 117, 4008–4011 (2011).
[PMID: 21343609]
Ng, E. S. et al. Differentiation of human embryonic stem cells to HOXA hemogenic vasculature that resembles the aorta-gonad-mesonephros. Nat. Biotechnol. 34, 1168–1179 (2016).
[PMID: 27748754]
Bertrand, J. Y., Cisson, J. L., Stachura, D. L. & Traver, D. Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. Blood 115, 2777–2783 (2010).
[PMID: 20107232]
Hadland, B. K. et al. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104, 3097–3105 (2004).
[PMID: 15251982]
Kumano, K. et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18, 699–711 (2003).
[PMID: 12753746]
Schulz, T. C. et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS ONE 7, e37004 (2012).
[PMID: 22623968]
Taoudi, S. et al. Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherinCD45 pre-definitive HSCs. Cell Stem Cell 3, 99–108 (2008).
[PMID: 18593562]
Skelton, R. J. et al. CD13 and ROR2 permit isolation of highly enriched cardiac mesoderm from differentiating human embryonic stem cells. Stem Cell Rep. 6, 95–108 (2016).
[DOI: 10.1016/j.stemcr.2015.11.006]
Gama-Norton, L. et al. Notch signal strength controls cell fate in the haemogenic endothelium. Nat. Commun. 6, 8510 (2015).
[PMID: 26465397]
Park, S. H. et al. HLA-DR expression in human fetal thymocytes. Hum. Immunol. 33, 294–298 (1992).
[PMID: 1639632]
Melichar, H. J., Ross, J. O., Taylor, K. T. & Robey, E. A. Stable interactions and sustained TCR signaling characterize thymocyte–thymocyte interactions that support negative selection. J. Immunol. 194, 1057–1061 (2015).
[PMID: 25520400]
Lancaster, J. N., Li, Y. & Ehrlich, L. I. R. Chemokine-mediated choreography of thymocyte development and selection. Trends Immunol. 39, 86–98 (2018).
[PMID: 29162323]
Zlotoff, D. A. et al. CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115, 1897–1905 (2010).
[PMID: 19965655]
Plotkin, J., Prockop, S. E., Lepique, A. & Petrie, H. T. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol. 171, 4521–4527 (2003).
[PMID: 14568925]
Koenen, P. et al. Mutually exclusive regulation of T cell survival by IL-7R and antigen receptor-induced signals. Nat. Commun. 4, 1735 (2013).
[PMID: 23591902]
Yokota, T. et al. Unique properties of fetal lymphoid progenitors identified according to RAG1 gene expression. Immunity 19, 365–375 (2003).
[PMID: 14499112]
van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018).
[PMID: 29961576]
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
[PMID: 24658644]
Kuwata, N., Igarashi, H., Ohmura, T., Aizawa, S. & Sakaguchi, N. Cutting edge: absence of expression of RAG1 in peritoneal B-1 cells detected by knocking into RAG1 locus with green fluorescent protein gene. J. Immunol. 163, 6355–6359 (1999).
[PMID: 10586023]
Igarashi, H. et al. Localization of recombination activating gene 1/green fluorescent protein (RAG1/GFP) expression in secondary lymphoid organs after immunization with T-dependent antigens in rag1/gfp knockin mice. Blood 97, 2680–2687 (2001).
[PMID: 11313258]
Tavian, M., Robin, C., Coulombel, L. & Peault, B. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity 15, 487–495 (2001).
[PMID: 11567638]
Klug, D. B. et al. Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc. Natl Acad. Sci. USA 95, 11822–11827 (1998).
[PMID: 9751749]
Hess, I. & Boehm, T. Intravital imaging of thymopoiesis reveals dynamic lympho-epithelial interactions. Immunity 36, 298–309 (2012).
[PMID: 22342843]
Costa, M. et al. A method for genetic modification of human embryonic stem cells using electroporation. Nat. Protoc. 2, 792–796 (2007).
[PMID: 17446878]
Kao, T. et al. GAPTrap: a simple expression system for pluripotent stem cells and their derivatives. Stem Cell Rep. 7, 518–526 (2016).
[DOI: 10.1016/j.stemcr.2016.07.015]
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).
[PMID: 9804556]
Davis, R. P. et al. A protocol for removal of antibiotic resistance cassettes from human embryonic stem cells genetically modified by homologous recombination or transgenesis. Nat. Protoc. 3, 1550–1558 (2008).
[PMID: 18802436]
Mohtashami, M., Shah, D. K., Kianizad, K., Awong, G. & Zúñiga-Pflücker, J. C. Induction of T-cell development by Delta-like 4-expressing fibroblasts. Int. Immunol. 25, 601–611 (2013).
[PMID: 23988616]
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).
[PMID: 22287627]
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
[PMID: 19910308]
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
[PMID: 25605792]
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
[PMID: 23104886]
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
[PMID: 29608179]