Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight.

Gerbert Sylvestre Dossa, Ian Quibod, Genelou Atienza-Grande, Ricardo Oliva, Edgar Maiss, Casiana Vera Cruz, Kerstin Wydra
Author Information
  1. Gerbert Sylvestre Dossa: International Rice Research Institute, Los Baños, Philippines. g.dossa@hotmail.com.
  2. Ian Quibod: International Rice Research Institute, Los Baños, Philippines.
  3. Genelou Atienza-Grande: International Rice Research Institute, Los Baños, Philippines.
  4. Ricardo Oliva: International Rice Research Institute, Los Baños, Philippines. ORCID
  5. Edgar Maiss: Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany.
  6. Casiana Vera Cruz: International Rice Research Institute, Los Baños, Philippines.
  7. Kerstin Wydra: Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany.

Abstract

Rice bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) implies substantial yield loss to rice. In times of climate change, increasing temperatures are observed and further acceleration is expected worldwide. Increasing temperature often turns into inhibition of host plant defense to pathogens. Recently, a reduced resistance in rice IRBB4 carrying Xa4, but an increase in resistance in IRBB7 carrying Xa7 resistance by increasing temperature has been reported. Influence of high temperature on both R genes (Xa4+Xa7) combined in IRBB67 was analyzed under growth chamber conditions and transcriptomic analysis performed. The pyramided line IRBB67 showed no differences in lesion length between both temperature regimes, demonstrating that non-effectiveness of Xa4 at high temperature did not affect IRBB67 resistance. Moreover, Xa4 complements Xa7 resistance with no Xoo spread in planta beyond the symptomatic area under both temperature regimes in IRBB67. Time course transcriptomic analysis revealed that temperature enhanced IRBB67 resistance to combined heat and Xoo. Our findings highlight altered cellular compartments and point at a role of the cell wall involved in Xoo resistance and heat stress tolerance in both susceptible (IR24) and the resistant (IRBB67) NILs. Interestingly, up-regulation of trehalose-6-phosphatase gene and low affinity cation transporter in IRBB67 suggest that IRBB67 maintained a certain homeostasis under high temperature which may have enhanced its resistance. The interplay of both heat stress and Xoo responses as determined by up-regulated and down-regulated genes demonstrates how resistant plants cope with combined biotic and abiotic stresses.

References

  1. Mol Plant Microbe Interact. 2001 Dec;14(12):1411-9 [PMID: 11768536]
  2. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  3. Plant Mol Biol. 2000 Oct;44(3):429-42 [PMID: 11199399]
  4. Science. 2009 Jan 9;323(5911):240-4 [PMID: 19131626]
  5. Mol Plant Microbe Interact. 2009 May;22(5):498-506 [PMID: 19348568]
  6. New Phytol. 2013 Nov;200(3):808-819 [PMID: 23879865]
  7. Annu Rev Phytopathol. 2006;44:489-509 [PMID: 16722808]
  8. J Gen Virol. 2008 Mar;89(Pt 3):799-808 [PMID: 18272772]
  9. Plant Signal Behav. 2007 Sep;2(5):358-61 [PMID: 19704598]
  10. Theor Appl Genet. 2005 Dec;112(1):97-105 [PMID: 16208504]
  11. Plants (Basel). 2015 Feb 16;4(1):112-66 [PMID: 27135320]
  12. BMC Genomics. 2013 Feb 12;14:93 [PMID: 23398910]
  13. Nat Chem Biol. 2009 May;5(5):308-16 [PMID: 19377457]
  14. Rice (N Y). 2013 Feb 08;6(1):5 [PMID: 24280417]
  15. Plant Signal Behav. 2011 Mar;6(3):335-8 [PMID: 21336026]
  16. Plant Mol Biol. 2006 Jan;60(1):107-24 [PMID: 16463103]
  17. Plant Mol Biol. 2010 Aug;73(6):643-58 [PMID: 20496099]
  18. Plant Physiol. 2013 Apr;161(4):1783-94 [PMID: 23447525]
  19. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):9971-5 [PMID: 15226500]
  20. Plant Cell. 2010 Nov;22(11):3864-76 [PMID: 21098734]
  21. New Phytol. 2001 Jul;151(1):35-66 [PMID: 33873389]
  22. J Plant Physiol. 2017 May;212:80-93 [PMID: 28282527]
  23. BMC Bioinformatics. 2014 Aug 29;15:293 [PMID: 25176396]
  24. Front Plant Sci. 2015 May 05;6:305 [PMID: 25999970]
  25. Plant Physiol. 2010 Jun;153(2):403-19 [PMID: 20388666]
  26. Biochem J. 2009 Dec 14;425(1):27-40 [PMID: 20001960]
  27. Plant Physiol Biochem. 2007 Oct-Nov;45(10-11):834-50 [PMID: 17870590]
  28. Nat Plants. 2015 Aug 24;1:15124 [PMID: 27250677]
  29. Annu Rev Phytopathol. 2009;47:177-206 [PMID: 19400653]
  30. Plant Physiol. 2004 Apr;134(4):1683-96 [PMID: 15047901]
  31. Front Plant Sci. 2014 May 28;5:228 [PMID: 24904623]
  32. Annu Rev Plant Biol. 2003;54:23-61 [PMID: 14502984]
  33. Plant Cell Physiol. 2011 Sep;52(9):1583-602 [PMID: 21828102]
  34. Front Plant Sci. 2015 Apr 24;6:267 [PMID: 25964789]
  35. Plant Mol Biol. 2010 Dec;74(6):549-62 [PMID: 20924648]
  36. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  37. Mol Plant Microbe Interact. 2011 Sep;24(9):1102-13 [PMID: 21679014]
  38. Mol Plant Microbe Interact. 2004 Nov;17(11):1192-200 [PMID: 15553245]
  39. Plant Physiol Biochem. 2009 Sep;47(9):838-46 [PMID: 19482482]
  40. PLoS Pathog. 2010 Apr 01;6(4):e1000844 [PMID: 20368979]
  41. Mol Plant Pathol. 2006 Sep;7(5):303-24 [PMID: 20507449]
  42. Nat Chem Biol. 2009 May;5(5):301-7 [PMID: 19377456]
  43. Plant Mol Biol. 2008 Sep;68(1-2):81-92 [PMID: 18523729]
  44. ScientificWorldJournal. 2014 Jan 19;2014:764089 [PMID: 24574917]
  45. Nat Commun. 2013;4:2530 [PMID: 24067909]
  46. BMC Bioinformatics. 2006 Dec 18;7:535 [PMID: 17176458]
  47. Nat Plants. 2017 Feb 17;3:17009 [PMID: 28211849]
  48. Plant Cell. 2004 Apr;16(4):1060-71 [PMID: 15031411]
  49. Science. 2008 Feb 1;319(5863):607-10 [PMID: 18239122]
  50. Curr Opin Plant Biol. 2013 Aug;16(4):406-13 [PMID: 23856082]
  51. PLoS One. 2017 Nov 6;12(11):e0187625 [PMID: 29107972]
  52. Plant Physiol Biochem. 2011 Apr;49(4):377-87 [PMID: 21367611]
  53. Science. 2009 Mar 6;323(5919):1357-60 [PMID: 19228999]
  54. Front Plant Sci. 2013 May 24;4:155 [PMID: 23745126]
  55. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13500-5 [PMID: 11095723]
  56. Rice (N Y). 2015 Feb 28;8:14 [PMID: 25844119]
  57. J Exp Bot. 2014 Mar;65(4):1051-68 [PMID: 24420566]
  58. Nat Rev Genet. 2008 Aug;9(8):583-93 [PMID: 18591982]
  59. J Exp Bot. 2012 Jun;63(10):3523-43 [PMID: 22467407]
  60. Funct Plant Biol. 2017 Feb;44(3):358-371 [PMID: 32480570]
  61. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20959-64 [PMID: 22160725]
  62. Dev Cell. 2004 Feb;6(2):229-40 [PMID: 14960277]
  63. New Phytol. 2010 Jan;185(2):568-76 [PMID: 19878463]
  64. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 [PMID: 20435677]
  65. Nat Commun. 2017 Nov 27;8(1):1808 [PMID: 29180698]

MeSH Term

Cell Wall
Climate Change
Disease Resistance
Gene Expression Profiling
Gene Expression Regulation, Plant
Homeostasis
Hot Temperature
Oryza
Plant Proteins
Xanthomonas

Chemicals

Plant Proteins