Transcriptional trajectories of anther development provide candidates for engineering male fertility in sorghum.

Namrata Dhaka, Kushagra Krishnan, Manu Kandpal, Ira Vashisht, Madan Pal, Manoj Kumar Sharma, Rita Sharma
Author Information
  1. Namrata Dhaka: Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
  2. Kushagra Krishnan: Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
  3. Manu Kandpal: Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
  4. Ira Vashisht: Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
  5. Madan Pal: Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.
  6. Manoj Kumar Sharma: Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
  7. Rita Sharma: Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India. rita.genomics@gmail.com.

Abstract

Sorghum is a self-pollinated crop with multiple economic uses as cereal, forage, and biofuel feedstock. Hybrid breeding is a cornerstone for sorghum improvement strategies that currently relies on cytoplasmic male sterile lines. To engineer genic male sterility, it is imperative to examine the genetic components regulating anther/pollen development in sorghum. To this end, we have performed transcriptomic analysis from three temporal stages of developing anthers that correspond to meiotic, microspore and mature pollen stages. A total of 5286 genes were differentially regulated among the three anther stages with 890 of them exhibiting anther-preferential expression. Differentially expressed genes could be clubbed into seven distinct developmental trajectories using K-means clustering. Pathway mapping revealed that genes involved in cell cycle, DNA repair, regulation of transcription, brassinosteroid and auxin biosynthesis/signalling exhibit peak expression in meiotic anthers, while those regulating abiotic stress, carbohydrate metabolism, and transport were enriched in microspore stage. Conversely, genes associated with protein degradation, post-translational modifications, cell wall biosynthesis/modifications, abscisic acid, ethylene, cytokinin and jasmonic acid biosynthesis/signalling were highly expressed in mature pollen stage. High concurrence in transcriptional dynamics and cis-regulatory elements of differentially expressed genes in rice and sorghum confirmed conserved developmental pathways regulating anther development across species. Comprehensive literature survey in conjunction with orthology analysis and anther-preferential accumulation enabled shortlisting of 21 prospective candidates for in-depth characterization and engineering male fertility in sorghum.

References

  1. Mol Plant. 2008 Jul;1(4):599-610 [PMID: 19825565]
  2. Physiol Plant. 2019 Mar;165(3):644-663 [PMID: 29766507]
  3. Plant Reprod. 2015 Jun;28(2):73-89 [PMID: 25761645]
  4. Plant Biotechnol J. 2017 Mar;15(3):379-389 [PMID: 27614049]
  5. J Integr Plant Biol. 2015 Nov;57(11):876-91 [PMID: 26310290]
  6. Ontogenez. 2013 Mar-Apr;44(2):91-100 [PMID: 23785846]
  7. Plant Physiol. 2003 Jun;132(2):640-52 [PMID: 12805594]
  8. Mol Plant. 2013 Jul;6(4):1065-73 [PMID: 23543439]
  9. BMC Plant Biol. 2011 May 09;11:78 [PMID: 21554676]
  10. Nat Commun. 2013;4:1445 [PMID: 23385589]
  11. Biotechnol Biofuels. 2017 Jun 8;10:146 [PMID: 28603553]
  12. Development. 2006 Nov;133(21):4211-8 [PMID: 17021043]
  13. BMC Res Notes. 2016 Feb 12;9:88 [PMID: 26868221]
  14. Plant Cell Environ. 2014 Jan;37(1):1-18 [PMID: 23731015]
  15. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3146-51 [PMID: 25713378]
  16. J Integr Plant Biol. 2014 Oct;56(10):979-94 [PMID: 24798002]
  17. Plant Cell. 2006 Nov;18(11):2999-3014 [PMID: 17138695]
  18. J Exp Bot. 2007;58(7):1627-35 [PMID: 17431025]
  19. J Integr Plant Biol. 2017 Sep;59(9):612-628 [PMID: 28783252]
  20. Plant Cell Rep. 2018 May;37(5):759-773 [PMID: 29411094]
  21. Plant Physiol. 2016 Mar;170(3):1611-23 [PMID: 26697896]
  22. Plant Cell Environ. 2009 Sep;32(9):1211-29 [PMID: 19389052]
  23. PLoS One. 2014 Sep 05;9(9):e106386 [PMID: 25192280]
  24. Gigascience. 2018 Jan 1;7(1):1-9 [PMID: 29220485]
  25. Plant Sci. 2015 Feb;231:212-20 [PMID: 25576006]
  26. J Exp Bot. 2015 Sep;66(19):5713-25 [PMID: 26034131]
  27. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  28. Genomics. 2020 Mar;112(2):1598-1610 [PMID: 31521711]
  29. Trends Plant Sci. 2018 Jan;23(1):53-65 [PMID: 29126789]
  30. Front Plant Sci. 2019 Jun 25;10:819 [PMID: 31293612]
  31. Plant Physiol. 2010 Dec;154(4):1855-70 [PMID: 20959420]
  32. Curr Opin Plant Biol. 2015 Oct;27:84-90 [PMID: 26190741]
  33. Front Plant Sci. 2016 Apr 25;7:529 [PMID: 27200008]
  34. Plant Cell. 2014 Apr 22;26(4):1512-1524 [PMID: 24755456]
  35. Plant Cell. 2013 Oct;25(10):3885-99 [PMID: 24122830]
  36. Plant Cell Physiol. 2017 Jul 1;58(7):1238-1248 [PMID: 28838125]
  37. Plant Physiol. 2003 Feb;131(2):547-57 [PMID: 12586879]
  38. PLoS One. 2017 Jan 4;12(1):e0165195 [PMID: 28052078]
  39. Plant Cell. 2013 Aug;25(8):2998-3009 [PMID: 23943860]
  40. Plant Cell Physiol. 2008 Oct;49(10):1429-50 [PMID: 18718932]
  41. Plant Biotechnol J. 2017 Oct;15(10):1295-1308 [PMID: 28244201]
  42. BMC Plant Biol. 2016 Nov 21;16(1):256 [PMID: 27871243]
  43. Plant J. 2012 Oct;72(1):18-30 [PMID: 22507309]
  44. Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15566-71 [PMID: 17878302]
  45. Plant Cell. 2003 Apr;15(4):1009-19 [PMID: 12671094]
  46. Theor Appl Genet. 1983 Sep;66(3-4):323-7 [PMID: 24263934]
  47. Front Plant Sci. 2015 Sep 14;6:713 [PMID: 26442027]
  48. Plant Mol Biol. 2013 Jun;82(3):239-53 [PMID: 23686450]
  49. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14145-14150 [PMID: 27864513]
  50. Plant Reprod. 2018 Dec;31(4):367-383 [PMID: 29948007]
  51. Plant Cell. 2006 Nov;18(11):3015-32 [PMID: 17138699]
  52. Plant Cell. 2017 Jul;29(7):1697-1708 [PMID: 28696221]
  53. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  54. Plant Mol Biol. 2015 Oct;89(3):293-307 [PMID: 26319516]
  55. Biometals. 2017 Oct;30(5):765-785 [PMID: 28936772]
  56. Mol Plant. 2019 Mar 4;12(3):321-342 [PMID: 30690174]
  57. Sci Rep. 2017 Jul 31;7(1):6863 [PMID: 28761138]
  58. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  59. Plant Mol Biol. 1996 Mar;30(6):1181-93 [PMID: 8704128]
  60. Plant J. 2007 Sep;51(5):919-30 [PMID: 17617177]
  61. Plant Physiol. 2016 Sep;172(1):341-57 [PMID: 27436829]
  62. Plant Biotechnol J. 2017 Jul;15(7):850-864 [PMID: 27998028]
  63. Acta Biochim Biophys Sin (Shanghai). 2014 Apr;46(4):305-12 [PMID: 24492537]
  64. Plant Cell. 2010 Dec;22(12):3935-50 [PMID: 21177480]
  65. Plant Cell Physiol. 2015 Feb;56(2):232-41 [PMID: 25261533]
  66. Plant Mol Biol. 2006 Mar;60(4):533-54 [PMID: 16525890]
  67. Chromosoma. 2013 Oct;122(5):363-76 [PMID: 23793712]
  68. Plant Physiol. 2009 May;150(1):244-56 [PMID: 19279197]
  69. BMC Res Notes. 2011 Sep 05;4:319 [PMID: 21892935]
  70. Plant Cell Physiol. 2011 Sep;52(9):1641-56 [PMID: 21771866]
  71. Plant Physiol. 2015 Nov;169(3):2064-79 [PMID: 26392263]
  72. Plant Physiol. 2013 Jun;162(2):720-31 [PMID: 23580594]
  73. Funct Plant Biol. 2006 Jun;33(6):555-562 [PMID: 32689263]
  74. Plant Physiol. 2010 Jan;152(1):374-87 [PMID: 19923234]
  75. C R Acad Sci III. 2001 Jun;324(6):543-50 [PMID: 11455877]
  76. Plant Cell Physiol. 2010 Dec;51(12):2060-81 [PMID: 21062870]
  77. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  78. Mol Plant. 2013 May;6(3):729-42 [PMID: 23220939]
  79. Plant Cell. 2011 Feb;23(2):515-33 [PMID: 21297036]
  80. Genetics. 2014 Dec;198(4):1447-56 [PMID: 25278554]
  81. Hortic Res. 2014 Sep 24;1:14047 [PMID: 26504550]
  82. Plant Mol Biol. 2007 Sep;65(1-2):31-42 [PMID: 17562186]
  83. Plant Cell Physiol. 2007 Sep;48(9):1319-30 [PMID: 17693452]
  84. Plant J. 2016 Oct;88(2):280-293 [PMID: 27337541]
  85. Gene. 2018 Apr 5;649:63-73 [PMID: 29355682]
  86. Plant Cell Rep. 2018 Feb;37(2):177-191 [PMID: 29332167]
  87. Plant Cell Physiol. 2008 Oct;49(10):1417-28 [PMID: 18776202]
  88. Plant Physiol. 2015 Sep;169(1):660-73 [PMID: 26195569]
  89. Plant J. 2009 Jul;59(2):303-15 [PMID: 19392701]
  90. Nucleic Acids Res. 2010 Jan;38(Database issue):D822-7 [PMID: 19858103]
  91. Plant Cell. 2008 Jul;20(7):1760-74 [PMID: 18628351]
  92. Dev Cell. 2013 Oct 14;27(1):113-22 [PMID: 24094741]
  93. J Exp Bot. 2016 Nov;67(21):6037-6049 [PMID: 27702997]
  94. PLoS Genet. 2011 Jan 06;7(1):e1001265 [PMID: 21253568]
  95. Rice (N Y). 2018 Apr 23;11(1):28 [PMID: 29687350]
  96. Plant Cell. 2010 Feb;22(2):417-30 [PMID: 20154151]
  97. Biomed Res Int. 2014;2014:708364 [PMID: 25250331]
  98. Plant J. 2011 Aug;67(4):583-94 [PMID: 21615569]
  99. Mol Biotechnol. 2011 May;48(1):49-59 [PMID: 21061188]
  100. Plant Sci. 2015 Sep;238:188-97 [PMID: 26259187]
  101. PLoS Genet. 2012 Jul;8(7):e1002809 [PMID: 22792078]
  102. Z Naturforsch C J Biosci. 2018 Apr 25;73(5-6):177-184 [PMID: 29197862]
  103. Plant Physiol. 2017 Apr;173(4):1967-1976 [PMID: 28246296]
  104. Plant J. 2017 Dec;92(6):1076-1091 [PMID: 29031031]
  105. Plant Cell. 2010 Jan;22(1):173-90 [PMID: 20086189]
  106. Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6100-5 [PMID: 20231470]
  107. Plant Mol Biol. 2011 Jan;75(1-2):129-39 [PMID: 21107887]

MeSH Term

Carbohydrate Metabolism
Cell Wall
Flowers
Gene Expression Regulation, Plant
Genetic Engineering
Genomics
Meiosis
Oryza
Plant Growth Regulators
Plant Infertility
Plant Proteins
Plants, Genetically Modified
Pollen
Reproducibility of Results
Secondary Metabolism
Sequence Analysis, RNA
Sorghum

Chemicals

Plant Growth Regulators
Plant Proteins