CUBIC: an atlas of genetic architecture promises directed maize improvement.

Hai-Jun Liu, Xiaqing Wang, Yingjie Xiao, Jingyun Luo, Feng Qiao, Wenyu Yang, Ruyang Zhang, Yijiang Meng, Jiamin Sun, Shijuan Yan, Yong Peng, Luyao Niu, Liumei Jian, Wei Song, Jiali Yan, Chunhui Li, Yanxin Zhao, Ya Liu, Marilyn L Warburton, Jiuran Zhao, Jianbing Yan
Author Information
  1. Hai-Jun Liu: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  2. Xiaqing Wang: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  3. Yingjie Xiao: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  4. Jingyun Luo: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  5. Feng Qiao: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  6. Wenyu Yang: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  7. Ruyang Zhang: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China.
  8. Yijiang Meng: College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
  9. Jiamin Sun: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  10. Shijuan Yan: Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou, 510640, China.
  11. Yong Peng: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  12. Luyao Niu: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  13. Liumei Jian: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  14. Wei Song: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China.
  15. Jiali Yan: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  16. Chunhui Li: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China.
  17. Yanxin Zhao: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China.
  18. Ya Liu: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China.
  19. Marilyn L Warburton: Corn Host Plant Resistance Research Unit, United States Department of Agriculture-Agricultural Research Service, Box 9555, Mississippi State, MS, 39762, USA.
  20. Jiuran Zhao: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China. maizezhao@126.com.
  21. Jianbing Yan: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. yjianbing@mail.hzau.edu.cn. ORCID

Abstract

BACKGROUND: Identifying genotype-phenotype links and causative genes from quantitative trait loci (QTL) is challenging for complex agronomically important traits. To accelerate maize gene discovery and breeding, we present the Complete-diallel design plus Unbalanced Breeding-like Inter-Cross (CUBIC) population, consisting of 1404 individuals created by extensively inter-crossing 24 widely used Chinese maize founders.
RESULTS: Hundreds of QTL for 23 agronomic traits are uncovered with 14 million high-quality SNPs and a high-resolution identity-by-descent map, which account for an average of 75% of the heritability for each trait. We find epistasis contributes to phenotypic variance widely. Integrative cross-population analysis and cross-omics mapping allow effective and rapid discovery of underlying genes, validated here with a case study on leaf width.
CONCLUSIONS: Through the integration of experimental genetics and genomics, our study provides useful resources and gene mining strategies to explore complex quantitative traits.

Keywords

References

  1. Nat Commun. 2019 Jun 14;10(1):2632 [PMID: 31201335]
  2. Mol Plant. 2017 Mar 06;10(3):530-532 [PMID: 28089950]
  3. Nat Plants. 2019 Dec;5(12):1237-1249 [PMID: 31740773]
  4. Plant Physiol. 2016 Feb;170(2):618-26 [PMID: 26620522]
  5. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  6. Genome Biol. 2020 Jan 24;21(1):20 [PMID: 31980033]
  7. Am J Hum Genet. 2012 Jan 13;90(1):7-24 [PMID: 22243964]
  8. New Phytol. 2016 May;210(3):1095-106 [PMID: 26715032]
  9. Cell. 2017 Jun 1;169(6):1142-1155.e12 [PMID: 28528644]
  10. Proc Natl Acad Sci U S A. 2016 May 31;113(22):E3177-84 [PMID: 27185945]
  11. Rice (N Y). 2013 May 06;6(1):11 [PMID: 24280183]
  12. Mol Plant. 2019 Jan 7;12(1):10-12 [PMID: 30543995]
  13. Nat Biotechnol. 2018 Oct 01;: [PMID: 30272678]
  14. Am J Hum Genet. 2007 Nov;81(5):1084-97 [PMID: 17924348]
  15. Heredity (Edinb). 2014 Jan;112(1):30-8 [PMID: 23462502]
  16. BMC Plant Biol. 2018 Apr 19;18(1):66 [PMID: 29673320]
  17. Sci Rep. 2016 Apr 01;6:23890 [PMID: 27033976]
  18. Nat Rev Genet. 2014 Jan;15(1):22-33 [PMID: 24296533]
  19. Behav Genet. 1984 Jan;14(1):81-104 [PMID: 6712552]
  20. Genetics. 2012 Apr;190(4):1547-62 [PMID: 22298708]
  21. Science. 2009 Nov 20;326(5956):1115-7 [PMID: 19965431]
  22. Genome Biol. 2015 Sep 11;16:167 [PMID: 26357913]
  23. PLoS Genet. 2009 Jul;5(7):e1000551 [PMID: 19593375]
  24. Nat Genet. 2017 Dec;49(12):1741-1746 [PMID: 29038596]
  25. Science. 2016 Aug 19;353(6301):814-8 [PMID: 27540173]
  26. Genetics. 2008 Nov;180(3):1707-24 [PMID: 18791260]
  27. Genome Biol. 2019 May 28;20(1):107 [PMID: 31138268]
  28. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  29. Theor Appl Genet. 2010 Aug;121(3):417-31 [PMID: 20349034]
  30. Bioinformatics. 2014 Nov 1;30(21):3118-9 [PMID: 25028724]
  31. Genome Biol. 2016 Jun 06;17(1):122 [PMID: 27268795]
  32. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  33. Mol Plant. 2017 Mar 6;10(3):414-426 [PMID: 27381443]
  34. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  35. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  36. Gigascience. 2015 Feb 25;4:7 [PMID: 25722852]
  37. Nat Commun. 2015 Mar 24;6:6648 [PMID: 25800954]
  38. Bioinformatics. 2007 Oct 1;23(19):2633-5 [PMID: 17586829]
  39. Nat Genet. 2011 Feb;43(2):159-62 [PMID: 21217756]
  40. Hum Genet. 2012 May;131(5):747-56 [PMID: 22143225]
  41. Plant J. 2019 Jan;97(1):8-18 [PMID: 30368955]
  42. Plant J. 2015 Feb;81(3):529-36 [PMID: 25440443]
  43. Am J Hum Genet. 2010 Sep 10;87(3):325-40 [PMID: 20817139]
  44. Nucleic Acids Res. 2017 Jan 4;45(D1):D18-D24 [PMID: 27899658]
  45. Nat Commun. 2018 Mar 2;9(1):918 [PMID: 29500431]
  46. Nat Rev Genet. 2004 Aug;5(8):618-25 [PMID: 15266344]
  47. Am J Hum Genet. 2011 Jan 7;88(1):76-82 [PMID: 21167468]
  48. Nat Genet. 2010 Apr;42(4):348-54 [PMID: 20208533]
  49. Genetics. 2011 Jul;188(3):673-81 [PMID: 21515578]
  50. Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4488-93 [PMID: 21368205]
  51. Genetics. 2008 Jan;178(1):539-51 [PMID: 18202393]
  52. Genomics Proteomics Bioinformatics. 2017 Feb;15(1):14-18 [PMID: 28387199]
  53. Nat Protoc. 2012 Feb 16;7(3):500-7 [PMID: 22343431]
  54. Genetics. 2006 Aug;173(4):2371-81 [PMID: 16783025]
  55. Mol Plant. 2017 Mar 6;10(3):359-374 [PMID: 28039028]
  56. Nat Genet. 2016 Aug;48(8):927-34 [PMID: 27322545]
  57. Nat Biotechnol. 2018 Oct 01;: [PMID: 30272676]
  58. Nat Plants. 2018 Oct;4(10):766-770 [PMID: 30287957]
  59. BMC Microbiol. 2012 Jun 13;12:106 [PMID: 22694821]
  60. Science. 2009 Aug 7;325(5941):714-8 [PMID: 19661422]
  61. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  62. Nat Protoc. 2006;1(1):387-96 [PMID: 17406261]
  63. Theor Appl Genet. 2015 Jun;128(6):999-1017 [PMID: 25855139]
  64. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  65. Plant J. 2011 Oct;68(2):364-76 [PMID: 21699588]
  66. New Phytol. 2016 May;210(3):1083-94 [PMID: 26720856]
  67. J Dairy Sci. 2008 Nov;91(11):4414-23 [PMID: 18946147]
  68. Nucleic Acids Res. 1980 Oct 10;8(19):4321-5 [PMID: 7433111]
  69. Nat Protoc. 2010 Jun;5(6):986-92 [PMID: 20448544]
  70. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12649-54 [PMID: 11050180]
  71. Biochimie. 2017 Jan;132:28-37 [PMID: 27770627]
  72. Annu Rev Plant Biol. 2017 Apr 28;68:435-455 [PMID: 28226236]

MeSH Term

Alleles
Epistasis, Genetic
Gene Expression Profiling
Genes, Plant
Genome-Wide Association Study
Genomics
Phenotype
Polymorphism, Single Nucleotide
Quantitative Trait Loci
Zea mays