Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids.

Jinxiang Chen, Jing Yang, Lanlan Ma, Jun Li, Nasir Shahzad, Chan Kyung Kim
Author Information
  1. Jinxiang Chen: School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
  2. Jing Yang: School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China. yangjing5152@163.com. ORCID
  3. Lanlan Ma: School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
  4. Jun Li: School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
  5. Nasir Shahzad: Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Korea.
  6. Chan Kyung Kim: Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Korea. kckyung@inha.ac.kr.

Abstract

The antioxidant activities of 18 typical phenolic acids were investigated using 2, 2'-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion reducing antioxidant power (FRAP) assays. Five thermodynamic parameters involving hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT), and sequential proton-loss electron transfer (SPLET) mechanisms were calculated using density functional theory with the B3LYP/UB3LYP functional and 6-311++G (d, p) basis set and compared in the phenolic acids. Based on the same substituents on the benzene ring, -CHCOOH and -CH = CHCOOH can enhance the antioxidant activities of phenolic acids, compared with -COOH. Methoxyl (-OCH) and phenolic hydroxyl (-OH) groups can also promote the antioxidant activities of phenolic acids. These results relate to the O-H bond dissociation enthalpy of the phenolic hydroxyl group in phenolic acids and the values of proton affinity and electron transfer enthalpy (ETE) involved in the electron donation ability of functional groups. In addition, we speculated that HAT, SET-PT, and SPLET mechanisms may occur in the DPPH reaction system. Whereas SPLET was the main reaction mechanism in the FRAP system, because, except for 4-hydroxyphenyl acid, the ETE values of the phenolic acids in water were consistent with the experimental results.

References

Sozen, E., Karademir, B. & Ozer, N. K. Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases. Free Radical. Bio. Med. 78, 30–41, https://doi.org/10.1016/j.freeradbiomed.2014.09.031 (2015). [DOI: 10.1016/j.freeradbiomed.2014.09.031]
Middleton, E., Kandaswami, C. & Theoharides, T. C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52, 673–751, https://doi.org/10.1006/phrs.2000.0734 (2000). [DOI: 10.1006/phrs.2000.0734]
Wang, W. Y. et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Tech. 56, 21–38, https://doi.org/10.1016/j.tifs.2016.07.004 (2016). [DOI: 10.1016/j.tifs.2016.07.004]
Kathrin, K. et al. Intestinal transit and systemic metabolism of apple polyphenols. Eur. J. Nutr. 50, 507–522, https://doi.org/10.1007/s00394-010-0157-0 (2011). [DOI: 10.1007/s00394-010-0157-0]
Barrington, R., Williamson, G., Bennett, R. N. & Davis, B. D. Absorption, conjugation and efflux of the flavonoids, kaempferol and galangin, using the intestinal CaCo-2/TC7 cell model. J. Funct. Foods. 1, 74–87, https://doi.org/10.1016/j.jff.2008.09.011 (2009). [DOI: 10.1016/j.jff.2008.09.011]
Duynhoven, J. V. et al. Metabolic fate of polyphenols in the human superorganism. P. Natl. Acad. Sci. USA 108, 4531–4538, https://doi.org/10.1073/pnas.1000098107 (2011). [DOI: 10.1073/pnas.1000098107]
Thomas, W., Kristina, W. U. & V., H. P. Carbon dioxide is the major metabolite of quercetin in humans. J. Nutr. 131, 2648–2652, https://doi.org/10.1093/jn/131.10.2648 (2001). [DOI: 10.1093/jn/131.10.2648]
William, M. et al. Bioavailability of [2-C]quercetin-4′-glucoside in rats. J. Agr. Food Chem. 56, 12127–12137, https://doi.org/10.1021/jf802754s (2008). [DOI: 10.1021/jf802754s]
Rodriguez-Bonilla, P., Gandia-Herrero, F., Matencio, A., Garcia-Carmona, F. & Lopez-Nicolas, J. M. Comparative study of the antioxidant capacity of four stilbenes using ORAC, ABTS, and FRAP techniques. Food Anal. Method. 10, 2994–3000, https://doi.org/10.1007/s12161-017-0871-9 (2017). [DOI: 10.1007/s12161-017-0871-9]
Farhoosh, R., Johnny, S., Asnaashari, M., Molaahmadibahraseman, N. & Sharif, A. Structure–AA relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem. 194, 128–134, https://doi.org/10.1016/j.foodchem.2015.08.003 (2016). [DOI: 10.1016/j.foodchem.2015.08.003]
Siquet, C., Paiva-Martins, F., Lima, J. L. F. C., Reis, S. & Borges, F. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids–a structure-activity relationship study. Free Radical. Res. 40, 433–442, https://doi.org/10.1080/10715760500540442 (2006). [DOI: 10.1080/10715760500540442]
Galano, A. et al. Food antioxidants: chemical insights at the molecular level. Annu Rev Food Sci. Technol. 7, 335–352, https://doi.org/10.1146/annurev-food-041715-033206 (2016). [DOI: 10.1146/annurev-food-041715-033206]
Vagánek, A., Rimarčík, J., Dropková, K., Lengyel, J. & Klein, E. Reaction enthalpies of OH bonds splitting-off in flavonoids: The role of non-polar and polar solvent. Comput. Theor. Chem. 1050, 31–38, https://doi.org/10.1016/j.comptc.2014.10.020 (2014). [DOI: 10.1016/j.comptc.2014.10.020]
Mazzone, G., Malaj, N., Galano, A. & Russo, N. Antioxidant properties of several coumarin-chalcone hybrids from theoretical insights. RSC Adv. 5, 565–575, https://doi.org/10.1039/C4RA11733F (2015). [DOI: 10.1039/C4RA11733F]
Shadnia, H. & Wright, J. S. Understanding the toxicity of phenols: using quantitative structure-activity relationship and enthalpy changes to discriminate between possible mechanisms. Chem. Res. Toxicol. 21, 1197–1204, https://doi.org/10.1021/tx800058r (2008). [DOI: 10.1021/tx800058r]
Ayoub, M., Camargo, A. C. D. & Shahidi, F. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. Food Chem. 197, 221–232, https://doi.org/10.1016/j.foodchem.2015.10.107 (2016). [DOI: 10.1016/j.foodchem.2015.10.107]
Natella, F., Nardini, M., Felice, M. D. & Scaccini, C. Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J. Agr. Food Chem. 47, 1453–1459, https://doi.org/10.1021/jf980737w (1999). [DOI: 10.1021/jf980737w]
Chen, Y., Xiao, H., Zheng, J. & Liang, G. Structure-thermodynamics-AA relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. Plos One. 10, 1–20, https://doi.org/10.1371/journal.pone.0121276 (2015). [DOI: 10.1371/journal.pone.0121276]
Xiao, Z., Wang, Y., Wang, J., Li, P. & Ma, F. Structure-antioxidant capacity relationship of dihydrochalcone compounds in. Malus. Food Chem. 275, 354–360, https://doi.org/10.1016/j.foodchem.2018.09.135 (2019). [DOI: 10.1016/j.foodchem.2018.09.135]
Cheng, J. C., Dai, F., Zhou, B., Yang, L. & Liu, Z. L. AA of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure–activity relationship. Food Chem. 104, 132–139, https://doi.org/10.1016/j.foodchem.2006.11.012 (2007). [DOI: 10.1016/j.foodchem.2006.11.012]
Ammar, R. B. et al. Antioxidant and free radical-scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L. (Rhamnaceae): A structure-activity relationship study. Food Chem. 116, 258–264, https://doi.org/10.1016/j.foodchem.2009.02.043 (2009). [DOI: 10.1016/j.foodchem.2009.02.043]
Mateos, R. et al. Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: Structure–activity relationship. Food Chem. 173, 313–320, https://doi.org/10.1016/j.foodchem.2014.10.036 (2015). [DOI: 10.1016/j.foodchem.2014.10.036]
Wright, J. S., Johnson, E. R. & DiLabio, G. A. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 123, 1173–1183, https://doi.org/10.1021/ja002455u (2001). [DOI: 10.1021/ja002455u]
Saito, S. & Kawabata, J. Synergistic Effects of Thiols and Amines on Antiradical Efficiency of Protocatechuic Acid. J. Agr. Food Chem. 52, 8163–8168, https://doi.org/10.1021/jf048970j (2004). [DOI: 10.1021/jf048970j]
Gülçin, I. AA of eugenol: a structure - activity relationship study. J. Med. Food. 14, 975–985, https://doi.org/10.1089/jmf.2010.0197 (2014). [DOI: 10.1089/jmf.2010.0197]
Mendes, R. A. et al. Probing the antioxidant potential of phloretin and phlorizin through a computational investigation. J. Mol. Model. 24, 101, https://doi.org/10.1007/s00894-018-3632-9 (2018). [DOI: 10.1007/s00894-018-3632-9]
Nenadis, N. & Tsimidou, M. Z. Contribution of DFT computed molecular descriptors in the study of radical scavenging activity trend of natural hydroxybenzaldehydes and corresponding acids. Food Res. Int. 48, 538–543, https://doi.org/10.1016/j.foodres.2012.05.014 (2012). [DOI: 10.1016/j.foodres.2012.05.014]
Rimarcík, J., Lukeš, V., Klein, E. & Ilcin, M. Study of the solvent effect on the enthalpies of homolytic and heterolytic N-H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J. Mol. Struct. 952, 25–30, https://doi.org/10.1016/j.theochem.2010.04.002 (2010). [DOI: 10.1016/j.theochem.2010.04.002]
Xue, Y., Zheng, Y., An, L., Dou, Y. & Liu, Y. Density functional theory study of the structure-AA of polyphenolic deoxybenzoins. Food Chem. 151, 198–206, https://doi.org/10.1016/j.foodchem.2013.11.064 (2014). [DOI: 10.1016/j.foodchem.2013.11.064]
Karelson, M., Lobanov, V. S. & Katritzky, A. R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev. 96, 1027–1044, https://doi.org/10.1021/cr950202r (1996). [DOI: 10.1021/cr950202r]
Altunkaya, A., Gökmen, V. & Skibsted, L. H. pH dependent AA of lettuce (L. sativa) and synergism with added phenolic antioxidants. Food Chem. 190, 25–32, https://doi.org/10.1016/j.foodchem.2015.05.069 (2016). [DOI: 10.1016/j.foodchem.2015.05.069]
Piang-Siong, W. et al. Contribution of trans-aconitic acid to DPPH scavenging ability in different media. Food Chem. 214, 447–452, https://doi.org/10.1016/j.foodchem.2016.07.083 (2017). [DOI: 10.1016/j.foodchem.2016.07.083]
Rajan, V. K. & Muraleedharan, K. A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid. Food Chem. 220, 93–99, https://doi.org/10.1016/j.foodchem.2016.09.178 (2017). [DOI: 10.1016/j.foodchem.2016.09.178]
Mikulski, D. & Molski, M. Quantum-chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites. J. Mol. Model. 18, 2907–2916, https://doi.org/10.1007/s00894-011-1306-y (2012). [DOI: 10.1007/s00894-011-1306-y]
Parker, V. D. Homolytic bond (H-A) dissociation free energies in solution. Applications of the standard potential of the (H/H) couple. J. Am. Chem. Soc. 114, 7458–7462, https://doi.org/10.1021/ja00045a018 (1992). [DOI: 10.1021/ja00045a018]
Ngo, T. C., Dao, D. Q., Nguyen, M. T. & Nam, P. C. A. DFT analysis on the radical scavenging activity of oxygenated terpenoids present in the extract of the buds of Cleistocalyx operculatus. RSC Advances 7, 39686–39698, https://doi.org/10.1039/C7RA04798C (2017). [DOI: 10.1039/C7RA04798C]
Zheng, Y. Z. et al. AA of Quercetin and Its Glucosides from Propolis: A Theoretical Study. Sci. Rep. 7, 7543, https://doi.org/10.1038/s41598-017-08024-8 (2017). [DOI: 10.1038/s41598-017-08024-8]
Jacopo, T., Benedetta, M. & Roberto, C. Quantum mechanical continuum solvation models. Chem. Rev. 36, 2999–3093, https://doi.org/10.1021/cr9904009 (2005). [DOI: 10.1021/cr9904009]
Cances, E., Mennucci, B. & Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107, 3032–3041, https://doi.org/10.1063/1.474659 (1997). [DOI: 10.1063/1.474659]

Word Cloud

Similar Articles

Cited By