Sozen, E., Karademir, B. & Ozer, N. K. Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases. Free Radical. Bio. Med. 78, 30–41, https://doi.org/10.1016/j.freeradbiomed.2014.09.031 (2015).
[DOI:
10.1016/j.freeradbiomed.2014.09.031]
Middleton, E., Kandaswami, C. & Theoharides, T. C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52, 673–751, https://doi.org/10.1006/phrs.2000.0734 (2000).
[DOI:
10.1006/phrs.2000.0734]
Wang, W. Y. et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Tech. 56, 21–38, https://doi.org/10.1016/j.tifs.2016.07.004 (2016).
[DOI:
10.1016/j.tifs.2016.07.004]
Kathrin, K. et al. Intestinal transit and systemic metabolism of apple polyphenols. Eur. J. Nutr. 50, 507–522, https://doi.org/10.1007/s00394-010-0157-0 (2011).
[DOI:
10.1007/s00394-010-0157-0]
Barrington, R., Williamson, G., Bennett, R. N. & Davis, B. D. Absorption, conjugation and efflux of the flavonoids, kaempferol and galangin, using the intestinal CaCo-2/TC7 cell model. J. Funct. Foods. 1, 74–87, https://doi.org/10.1016/j.jff.2008.09.011 (2009).
[DOI:
10.1016/j.jff.2008.09.011]
Duynhoven, J. V. et al. Metabolic fate of polyphenols in the human superorganism. P. Natl. Acad. Sci. USA 108, 4531–4538, https://doi.org/10.1073/pnas.1000098107 (2011).
[DOI:
10.1073/pnas.1000098107]
Thomas, W., Kristina, W. U. & V., H. P. Carbon dioxide is the major metabolite of quercetin in humans. J. Nutr. 131, 2648–2652, https://doi.org/10.1093/jn/131.10.2648 (2001).
[DOI:
10.1093/jn/131.10.2648]
William, M. et al. Bioavailability of [2-C]quercetin-4′-glucoside in rats. J. Agr. Food Chem. 56, 12127–12137, https://doi.org/10.1021/jf802754s (2008).
[DOI:
10.1021/jf802754s]
Rodriguez-Bonilla, P., Gandia-Herrero, F., Matencio, A., Garcia-Carmona, F. & Lopez-Nicolas, J. M. Comparative study of the antioxidant capacity of four stilbenes using ORAC, ABTS, and FRAP techniques. Food Anal. Method. 10, 2994–3000, https://doi.org/10.1007/s12161-017-0871-9 (2017).
[DOI:
10.1007/s12161-017-0871-9]
Farhoosh, R., Johnny, S., Asnaashari, M., Molaahmadibahraseman, N. & Sharif, A. Structure–AA relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem. 194, 128–134, https://doi.org/10.1016/j.foodchem.2015.08.003 (2016).
[DOI:
10.1016/j.foodchem.2015.08.003]
Siquet, C., Paiva-Martins, F., Lima, J. L. F. C., Reis, S. & Borges, F. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids–a structure-activity relationship study. Free Radical. Res. 40, 433–442, https://doi.org/10.1080/10715760500540442 (2006).
[DOI:
10.1080/10715760500540442]
Galano, A. et al. Food antioxidants: chemical insights at the molecular level. Annu Rev Food Sci. Technol. 7, 335–352, https://doi.org/10.1146/annurev-food-041715-033206 (2016).
[DOI:
10.1146/annurev-food-041715-033206]
Vagánek, A., Rimarčík, J., Dropková, K., Lengyel, J. & Klein, E. Reaction enthalpies of OH bonds splitting-off in flavonoids: The role of non-polar and polar solvent. Comput. Theor. Chem. 1050, 31–38, https://doi.org/10.1016/j.comptc.2014.10.020 (2014).
[DOI:
10.1016/j.comptc.2014.10.020]
Mazzone, G., Malaj, N., Galano, A. & Russo, N. Antioxidant properties of several coumarin-chalcone hybrids from theoretical insights. RSC Adv. 5, 565–575, https://doi.org/10.1039/C4RA11733F (2015).
[DOI:
10.1039/C4RA11733F]
Shadnia, H. & Wright, J. S. Understanding the toxicity of phenols: using quantitative structure-activity relationship and enthalpy changes to discriminate between possible mechanisms. Chem. Res. Toxicol. 21, 1197–1204, https://doi.org/10.1021/tx800058r (2008).
[DOI:
10.1021/tx800058r]
Ayoub, M., Camargo, A. C. D. & Shahidi, F. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals. Food Chem. 197, 221–232, https://doi.org/10.1016/j.foodchem.2015.10.107 (2016).
[DOI:
10.1016/j.foodchem.2015.10.107]
Natella, F., Nardini, M., Felice, M. D. & Scaccini, C. Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J. Agr. Food Chem. 47, 1453–1459, https://doi.org/10.1021/jf980737w (1999).
[DOI:
10.1021/jf980737w]
Chen, Y., Xiao, H., Zheng, J. & Liang, G. Structure-thermodynamics-AA relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. Plos One. 10, 1–20, https://doi.org/10.1371/journal.pone.0121276 (2015).
[DOI:
10.1371/journal.pone.0121276]
Xiao, Z., Wang, Y., Wang, J., Li, P. & Ma, F. Structure-antioxidant capacity relationship of dihydrochalcone compounds in. Malus. Food Chem. 275, 354–360, https://doi.org/10.1016/j.foodchem.2018.09.135 (2019).
[DOI:
10.1016/j.foodchem.2018.09.135]
Cheng, J. C., Dai, F., Zhou, B., Yang, L. & Liu, Z. L. AA of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure–activity relationship. Food Chem. 104, 132–139, https://doi.org/10.1016/j.foodchem.2006.11.012 (2007).
[DOI:
10.1016/j.foodchem.2006.11.012]
Ammar, R. B. et al. Antioxidant and free radical-scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L. (Rhamnaceae): A structure-activity relationship study. Food Chem. 116, 258–264, https://doi.org/10.1016/j.foodchem.2009.02.043 (2009).
[DOI:
10.1016/j.foodchem.2009.02.043]
Mateos, R. et al. Synthesis and antioxidant evaluation of isochroman-derivatives of hydroxytyrosol: Structure–activity relationship. Food Chem. 173, 313–320, https://doi.org/10.1016/j.foodchem.2014.10.036 (2015).
[DOI:
10.1016/j.foodchem.2014.10.036]
Wright, J. S., Johnson, E. R. & DiLabio, G. A. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 123, 1173–1183, https://doi.org/10.1021/ja002455u (2001).
[DOI:
10.1021/ja002455u]
Saito, S. & Kawabata, J. Synergistic Effects of Thiols and Amines on Antiradical Efficiency of Protocatechuic Acid. J. Agr. Food Chem. 52, 8163–8168, https://doi.org/10.1021/jf048970j (2004).
[DOI:
10.1021/jf048970j]
Gülçin, I. AA of eugenol: a structure - activity relationship study. J. Med. Food. 14, 975–985, https://doi.org/10.1089/jmf.2010.0197 (2014).
[DOI:
10.1089/jmf.2010.0197]
Mendes, R. A. et al. Probing the antioxidant potential of phloretin and phlorizin through a computational investigation. J. Mol. Model. 24, 101, https://doi.org/10.1007/s00894-018-3632-9 (2018).
[DOI:
10.1007/s00894-018-3632-9]
Nenadis, N. & Tsimidou, M. Z. Contribution of DFT computed molecular descriptors in the study of radical scavenging activity trend of natural hydroxybenzaldehydes and corresponding acids. Food Res. Int. 48, 538–543, https://doi.org/10.1016/j.foodres.2012.05.014 (2012).
[DOI:
10.1016/j.foodres.2012.05.014]
Rimarcík, J., Lukeš, V., Klein, E. & Ilcin, M. Study of the solvent effect on the enthalpies of homolytic and heterolytic N-H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J. Mol. Struct. 952, 25–30, https://doi.org/10.1016/j.theochem.2010.04.002 (2010).
[DOI:
10.1016/j.theochem.2010.04.002]
Xue, Y., Zheng, Y., An, L., Dou, Y. & Liu, Y. Density functional theory study of the structure-AA of polyphenolic deoxybenzoins. Food Chem. 151, 198–206, https://doi.org/10.1016/j.foodchem.2013.11.064 (2014).
[DOI:
10.1016/j.foodchem.2013.11.064]
Karelson, M., Lobanov, V. S. & Katritzky, A. R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev. 96, 1027–1044, https://doi.org/10.1021/cr950202r (1996).
[DOI:
10.1021/cr950202r]
Altunkaya, A., Gökmen, V. & Skibsted, L. H. pH dependent AA of lettuce (L. sativa) and synergism with added phenolic antioxidants. Food Chem. 190, 25–32, https://doi.org/10.1016/j.foodchem.2015.05.069 (2016).
[DOI:
10.1016/j.foodchem.2015.05.069]
Piang-Siong, W. et al. Contribution of trans-aconitic acid to DPPH scavenging ability in different media. Food Chem. 214, 447–452, https://doi.org/10.1016/j.foodchem.2016.07.083 (2017).
[DOI:
10.1016/j.foodchem.2016.07.083]
Rajan, V. K. & Muraleedharan, K. A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid. Food Chem. 220, 93–99, https://doi.org/10.1016/j.foodchem.2016.09.178 (2017).
[DOI:
10.1016/j.foodchem.2016.09.178]
Mikulski, D. & Molski, M. Quantum-chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites. J. Mol. Model. 18, 2907–2916, https://doi.org/10.1007/s00894-011-1306-y (2012).
[DOI:
10.1007/s00894-011-1306-y]
Parker, V. D. Homolytic bond (H-A) dissociation free energies in solution. Applications of the standard potential of the (H/H) couple. J. Am. Chem. Soc. 114, 7458–7462, https://doi.org/10.1021/ja00045a018 (1992).
[DOI:
10.1021/ja00045a018]
Ngo, T. C., Dao, D. Q., Nguyen, M. T. & Nam, P. C. A. DFT analysis on the radical scavenging activity of oxygenated terpenoids present in the extract of the buds of Cleistocalyx operculatus. RSC Advances 7, 39686–39698, https://doi.org/10.1039/C7RA04798C (2017).
[DOI:
10.1039/C7RA04798C]
Zheng, Y. Z. et al. AA of Quercetin and Its Glucosides from Propolis: A Theoretical Study. Sci. Rep. 7, 7543, https://doi.org/10.1038/s41598-017-08024-8 (2017).
[DOI:
10.1038/s41598-017-08024-8]
Jacopo, T., Benedetta, M. & Roberto, C. Quantum mechanical continuum solvation models. Chem. Rev. 36, 2999–3093, https://doi.org/10.1021/cr9904009 (2005).
[DOI:
10.1021/cr9904009]
Cances, E., Mennucci, B. & Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107, 3032–3041, https://doi.org/10.1063/1.474659 (1997).
[DOI:
10.1063/1.474659]