Long Cycle Life Organic Polysulfide Catholyte for Rechargeable Lithium Batteries.

Dan-Yang Wang, Yubing Si, Wei Guo, Yongzhu Fu
Author Information
  1. Dan-Yang Wang: College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China.
  2. Yubing Si: College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China.
  3. Wei Guo: College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China.
  4. Yongzhu Fu: College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China. ORCID

Abstract

Organic compounds with active sites for lithiation can be used as electrode materials for lithium batteries. Their tunable structures allow a variety of materials to be made and investigated. Herein, a spectrum of dipyridyl polysulfides (PyS , 3 ≤ ≤ 8) is prepared in electrolyte by a one-pot synthesis method from dipyridyl disulfide (PyS) and elemental sulfur. It renders up to seven dipyridyl polysulfides (i.e., PyS, PyS, PyS, PyS, PyS, and PyS) which show fully reversible electrochemical behavior in lithium batteries. In the discharge, the initial lithiation occurs at 2.45 V leading to the breakage of S-S bonds in PyS and formation of lithium 2-pyridinethiolate, in which lithium is coordinated in between N and S atoms. The left sulfur species act as elemental sulfur, showing two voltage plateaus at 2.3 and 2.1 V. The molecular dynamics simulations show the attraction between pyridyl groups and lithium polysulfides/sulfide via N···Li···S bonds, which enable good retention of soluble discharge products within electrodes and stable cycling performance. In the recharge, low-order PyS (e.g., PyS, PyS, and PyS) remain as the charged products. The mixture catholyte exhibits superlong cycle life at 1C rate with 1200 cycles and 70.5% capacity retention.

Keywords

References

Angew Chem Int Ed Engl. 2017 Nov 20;56(47):15118-15122 [PMID: 28984016]
Nano Lett. 2016 Jan 13;16(1):519-27 [PMID: 26713782]
Adv Sci (Weinh). 2015 Jun 08;2(9):1500124 [PMID: 27980977]
J Am Chem Soc. 2013 Jan 30;135(4):1167-76 [PMID: 23294028]
J Am Chem Soc. 2015 Jul 8;137(26):8372-5 [PMID: 26091423]
Adv Sci (Weinh). 2016 Jul 21;3(12):1600101 [PMID: 27981001]
Adv Sci (Weinh). 2019 Dec 23;7(4):1902646 [PMID: 32076592]
J Am Chem Soc. 2012 Nov 14;134(45):18510-3 [PMID: 23101502]
Angew Chem Int Ed Engl. 2016 Feb 24;55(9):3106-11 [PMID: 26822950]
Acc Chem Res. 2013 May 21;46(5):1125-34 [PMID: 23095063]
Chem Rev. 2011 May 11;111(5):3577-613 [PMID: 21375330]
Angew Chem Int Ed Engl. 2016 Aug 16;55(34):10027-31 [PMID: 27411083]
Angew Chem Int Ed Engl. 2013 Jul 1;52(27):6930-5 [PMID: 23720382]
Acc Chem Res. 2013 May 21;46(5):1135-43 [PMID: 23054430]
Chemistry. 2017 Dec 1;23(67):16941-16947 [PMID: 28861926]
J Phys Chem B. 2009 May 7;113(18):6378-96 [PMID: 19366259]
Acc Chem Res. 2019 Aug 20;52(8):2290-2300 [PMID: 31386341]
J Chem Theory Comput. 2017 May 9;13(5):1989-2009 [PMID: 28418654]
Nat Commun. 2017 Oct 11;8(1):850 [PMID: 29021575]
Nat Mater. 2011 Dec 15;11(1):19-29 [PMID: 22169914]
Nat Commun. 2015 Jun 12;6:7278 [PMID: 26065407]

Word Cloud

Similar Articles

Cited By