The genome evolution and domestication of tropical fruit mango.

Peng Wang, Yingfeng Luo, Jianfeng Huang, Shenghan Gao, Guopeng Zhu, Zhiguo Dang, Jiangtao Gai, Meng Yang, Min Zhu, Huangkai Zhang, Xiuxu Ye, Aiping Gao, Xinyu Tan, Sen Wang, Shuangyang Wu, Edgar B Cahoon, Beibei Bai, Zhichang Zhao, Qian Li, Junya Wei, Huarui Chen, Ruixiong Luo, Deyong Gong, Kexuan Tang, Bing Zhang, Zhangguang Ni, Guodi Huang, Songnian Hu, Yeyuan Chen
Author Information
  1. Peng Wang: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China. pwang@catas.cn. ORCID
  2. Yingfeng Luo: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1-3 West Beichen Road, Beijing, 100101, China.
  3. Jianfeng Huang: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  4. Shenghan Gao: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1-3 West Beichen Road, Beijing, 100101, China.
  5. Guopeng Zhu: School of Landscape and Horticulture, Hainan University, Haikou, 570208, Hainan, China.
  6. Zhiguo Dang: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  7. Jiangtao Gai: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  8. Meng Yang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
  9. Min Zhu: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  10. Huangkai Zhang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
  11. Xiuxu Ye: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  12. Aiping Gao: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  13. Xinyu Tan: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1-3 West Beichen Road, Beijing, 100101, China.
  14. Sen Wang: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
  15. Shuangyang Wu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
  16. Edgar B Cahoon: Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
  17. Beibei Bai: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  18. Zhichang Zhao: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  19. Qian Li: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  20. Junya Wei: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  21. Huarui Chen: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  22. Ruixiong Luo: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
  23. Deyong Gong: Guizhou Subtropical Crops Research Institute, Xingyi, Qianxinan, Guzhou, 562400, China.
  24. Kexuan Tang: Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
  25. Bing Zhang: Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
  26. Zhangguang Ni: Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, 678005, Yunnan, China.
  27. Guodi Huang: Guangxi Subtropical Crops Research Institute, Nanning, 530001, Guangxi, China.
  28. Songnian Hu: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1-3 West Beichen Road, Beijing, 100101, China. husn@im.ac.cn.
  29. Yeyuan Chen: Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China. chenyy1962@catas.cn.

Abstract

BACKGROUND: Mango is one of the world's most important tropical fruits. It belongs to the family Anacardiaceae, which includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis.
RESULTS: We generate a chromosome-scale genome assembly of mango, providing a reference genome for the Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in genomes.
CONCLUSIONS: Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in commercial varieties, and shows distinct genetic background of landraces.

Keywords

References

  1. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  2. Science. 2013 Dec 20;342(6165):1241089 [PMID: 24357323]
  3. Methods Mol Biol. 2009;537:113-37 [PMID: 19378142]
  4. Nat Protoc. 2016 Sep;11(9):1650-67 [PMID: 27560171]
  5. Nature. 2007 Sep 27;449(7161):463-7 [PMID: 17721507]
  6. Nature. 2000 Dec 14;408(6814):796-815 [PMID: 11130711]
  7. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  8. Genome Res. 2014 Aug;24(8):1334-47 [PMID: 24835588]
  9. Plant Cell. 2007 Feb;19(2):395-402 [PMID: 17293565]
  10. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  11. Genome Res. 2008 Dec;18(12):1944-54 [PMID: 18832442]
  12. Gigascience. 2017 May 1;6(5):1-14 [PMID: 28368449]
  13. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  14. Front Plant Sci. 2017 Apr 20;8:577 [PMID: 28473837]
  15. Trends Plant Sci. 2016 Jan;21(1):31-42 [PMID: 26559599]
  16. Bioinformatics. 2017 Jul 15;33(14):2202-2204 [PMID: 28369201]
  17. Front Plant Sci. 2016 Oct 20;7:1579 [PMID: 27812364]
  18. Methods Mol Biol. 2019;1962:65-95 [PMID: 31020555]
  19. Crit Rev Biochem Mol Biol. 2013 Mar-Apr;48(2):123-52 [PMID: 23350798]
  20. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  21. Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
  22. Nat Genet. 2011 Sep 18;43(10):1031-4 [PMID: 21926973]
  23. Front Plant Sci. 2017 Nov 06;8:1911 [PMID: 29163624]
  24. Sci Rep. 2017 Aug 18;7(1):8711 [PMID: 28821734]
  25. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  26. Plant Physiol. 2010 Aug;153(4):1479-91 [PMID: 20522724]
  27. PLoS Biol. 2010 Jun 29;8(6):e1000409 [PMID: 20613864]
  28. Plant Cell. 2016 Nov;28(11):2866-2883 [PMID: 27811015]
  29. Plant Physiol. 2011 Aug;156(4):1655-60 [PMID: 21617028]
  30. Nature. 2000 Aug 17;406(6797):695-9 [PMID: 10963587]
  31. Arabidopsis Book. 2013;11:e0161 [PMID: 23505340]
  32. Genes (Basel). 2017 Nov 10;8(11): [PMID: 29125533]
  33. J Biomed Biotechnol. 2004;2004(5):314-320 [PMID: 15577195]
  34. Nature. 1950 Jul 29;166(4213):196-7 [PMID: 15439231]
  35. Am J Bot. 2009 Nov;96(11):2048-61 [PMID: 21622324]
  36. Am J Bot. 2010 Aug;97(8):1296-303 [PMID: 21616882]
  37. Nat Genet. 2017 Nov;49(11):1633-1641 [PMID: 28991254]
  38. Nucleic Acids Res. 2003 Jan 1;31(1):439-41 [PMID: 12520045]
  39. Nature. 2008 Apr 24;452(7190):991-6 [PMID: 18432245]
  40. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  41. Nat Plants. 2016 Aug 01;2:16115 [PMID: 27479829]
  42. BMC Bioinformatics. 2018 Nov 29;19(1):460 [PMID: 30497373]
  43. Nucleic Acids Res. 2010 Sep;38(16):e164 [PMID: 20601685]
  44. Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 [PMID: 14500829]
  45. Bioinformatics. 2007 May 1;23(9):1061-7 [PMID: 17332020]
  46. Genome Res. 2006 Jul;16(7):934-46 [PMID: 16760422]
  47. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  48. Methods Mol Biol. 2007;396:59-70 [PMID: 18025686]
  49. Plant Cell. 2004 Jul;16(7):1667-78 [PMID: 15208399]
  50. Nat Genet. 2013 Jan;45(1):51-8 [PMID: 23179023]
  51. Contact Dermatitis. 1995 Aug;33(2):123 [PMID: 8549128]
  52. Science. 2014 Sep 5;345(6201):1181-4 [PMID: 25190796]
  53. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  54. Rice (N Y). 2013 Feb 06;6(1):4 [PMID: 24280374]
  55. Nat Methods. 2017 Jan;14(1):68-70 [PMID: 27869815]
  56. Nat Plants. 2018 Feb;4(2):82-89 [PMID: 29379155]
  57. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 [PMID: 9847135]
  58. Comput Appl Biosci. 1997 Oct;13(5):555-6 [PMID: 9367129]
  59. Genome Biol. 2019 Apr 18;20(1):79 [PMID: 30999938]
  60. PLoS Genet. 2006 Dec;2(12):e190 [PMID: 17194218]
  61. Bioinformatics. 1998;14(9):755-63 [PMID: 9918945]
  62. Nature. 2012 May 30;485(7400):635-41 [PMID: 22660326]
  63. Genome Res. 2002 Apr;12(4):656-64 [PMID: 11932250]
  64. Nature. 2011 May 5;473(7345):97-100 [PMID: 21478875]
  65. Cell Immunol. 1986 Jan;97(1):189-96 [PMID: 3742608]
  66. Nat Genet. 2013 May;45(5):487-94 [PMID: 23525075]
  67. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8 [PMID: 21187386]
  68. Food Res Int. 2017 Oct;100(Pt 3):423-434 [PMID: 28964365]
  69. IEEE/ACM Trans Comput Biol Bioinform. 2013 May-Jun;10(3):645-56 [PMID: 24091398]
  70. Genome Biol. 2015 Jan 13;16:3 [PMID: 25583564]
  71. Nat Genet. 2013 Jan;45(1):59-66 [PMID: 23179022]
  72. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  73. Sci Rep. 2017 Apr 20;7:46163 [PMID: 28425468]
  74. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  75. Bioinformatics. 2006 May 15;22(10):1269-71 [PMID: 16543274]
  76. Nat Rev Genet. 2001 May;2(5):333-41 [PMID: 11331899]
  77. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  78. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  79. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  80. Plant Cell. 2010 Dec;22(12):4045-66 [PMID: 21193570]
  81. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  82. Front Plant Sci. 2016 Aug 30;7:1310 [PMID: 27625670]
  83. J Food Sci Technol. 2018 Nov;55(11):4566-4577 [PMID: 30333653]
  84. Nucleic Acids Res. 2016 Jul 8;44(W1):W236-41 [PMID: 27131786]
  85. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  86. Genet Mol Res. 2017 Mar 22;16(1): [PMID: 28340266]
  87. Nat Plants. 2016 May 23;2(6):16073 [PMID: 27255837]
  88. Plant Cell. 2016 Aug;28(8):1759-68 [PMID: 27512012]
  89. Nat Plants. 2018 Jul;4(7):440-452 [PMID: 29915331]
  90. Nucleic Acids Res. 2014 Jan;42(Database issue):D1182-7 [PMID: 24174544]
  91. Nat Prod Rep. 2010 Jun;27(6):809-38 [PMID: 20358127]
  92. Bioinformatics. 2007 Jul 15;23(14):1801-6 [PMID: 17485429]
  93. Bioinformatics. 2013 Nov 15;29(22):2933-5 [PMID: 24008419]
  94. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  95. Bioinformatics. 2005 Jun 1;21(11):2791-3 [PMID: 15814564]
  96. Methods Mol Biol. 2016;1374:339-61 [PMID: 26519415]
  97. Nat Struct Biol. 1999 Aug;6(8):775-84 [PMID: 10426957]
  98. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W358-63 [PMID: 18487275]

MeSH Term

Acyltransferases
Domestication
Evolution, Molecular
Fruit
Genetic Variation
Genome, Plant
Mangifera
Phenols
Pigmentation

Chemicals

Phenols
Acyltransferases
flavanone synthetase

Word Cloud

Similar Articles

Cited By