Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. While both genetic and environmental factors have been linked to the incidence and mortality associated with CRC, an ethnic aspect of its etiology has also emerged. Since previous large-scale cancer genomics studies are mostly based on samples of European ancestry, the patterns of clinical events and associated mechanisms in other minority ethnic patients suffering from CRC are largely unexplored. We collected 104 paired and adjacent normal tissue and CRC tumor samples from Taiwanese patients and employed an integrated approach - paired expression profiles of mRNAs and microRNAs (miRNAs) combined with transcriptome-wide network analyses - to catalog the molecular signatures of this regional cohort. On the basis of this dataset, which is the largest ever reported for this type of systems analysis, we made the following key discoveries: (1) In comparison to the The Cancer Genome Atlas (TCGA) data, the Taiwanese CRC tumors show similar perturbations in expressed genes but a distinct enrichment in metastasis-associated pathways. (2) Recurrent as well as novel CRC-associated gene fusions were identified based on the sequencing data. (3) Cancer subtype classification using existing tools reveals a comparable distribution of tumor subtypes between Taiwanese cohort and TCGA datasets; however, this similarity in molecular attributes did not translate into the predicted subtype-related clinical outcomes (i.e., death event). (4) To further elucidate the molecular basis of CRC prognosis, we developed a new stratification strategy based on miRNA-mRNA-associated subtyping (MMAS) and consequently showed that repressed WNT signaling activity is associated with poor prognosis in Taiwanese CRC. In summary, our findings of distinct, hitherto unreported biosignatures underscore the heterogeneity of CRC tumorigenesis, support our hypothesis of an ethnic basis of disease, and provide prospects for translational medicine.
References
Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90, https://doi.org/10.3322/caac.20107 (2011).
[DOI: 10.3322/caac.20107]
Edwards, B. K. et al. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 116, 544–573, https://doi.org/10.1002/cncr.24760 (2010).
[DOI: 10.1002/cncr.24760]
Armaghany, T., Wilson, J. D., Chu, Q. & Mills, G. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res. 5, 19–27 (2012).
[PMID: 22574233]
Al-Sohaily, S., Biankin, A., Leong, R., Kohonen-Corish, M. & Warusavitarne, J. Molecular pathways in colorectal cancer. J. Gastroenterol. Hepatol. 27, 1423–1431, https://doi.org/10.1111/j.1440-1746.2012.07200.x (2012).
[DOI: 10.1111/j.1440-1746.2012.07200.x]
Sancho, E., Batlle, E. & Clevers, H. Signaling pathways in intestinal development and cancer. Annu. Rev. Cell Dev. Biol. 20, 695–723, https://doi.org/10.1146/annurev.cellbio.20.010403.092805 (2004).
[DOI: 10.1146/annurev.cellbio.20.010403.092805]
Gonzalez, C. A. & Riboli, E. Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Cancer 46, 2555–2562, https://doi.org/10.1016/j.ejca.2010.07.025 (2010).
[DOI: 10.1016/j.ejca.2010.07.025]
Johnson, C. M. et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 24, 1207–1222, https://doi.org/10.1007/s10552-013-0201-5 (2013).
[DOI: 10.1007/s10552-013-0201-5]
Winter, J., Jung, S., Keller, S., Gregory, R. I. & Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11, 228–234, https://doi.org/10.1038/ncb0309-228 (2009).
[DOI: 10.1038/ncb0309-228]
Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060, https://doi.org/10.1038/sj.emboj.7600385 (2004).
[DOI: 10.1038/sj.emboj.7600385]
Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–73, https://doi.org/10.1093/nar/gkt1181 (2014).
[DOI: 10.1093/nar/gkt1181]
Kjersem, J. B. et al. Let-7 miRNA-binding site polymorphism in the KRAS 3’UTR; colorectal cancer screening population prevalence and influence on clinical outcome in patients with metastatic colorectal cancer treated with 5-fluorouracil and oxaliplatin +/− cetuximab. BMC Cancer 12, 534, https://doi.org/10.1186/1471-2407-12-534 (2012).
[DOI: 10.1186/1471-2407-12-534]
Nagel, R. et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 68, 5795–5802, https://doi.org/10.1158/0008-5472.CAN-08-0951 (2008).
[DOI: 10.1158/0008-5472.CAN-08-0951]
Qu, Y. L. et al. Up-regulated miR-155-5p promotes cell proliferation, invasion and metastasis in colorectal carcinoma. Int. J. Clin. Exp. Pathol. 8, 6988–6994 (2015).
[PMID: 26261588]
Ng, E. K. et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br. J. Cancer 101, 699–706, https://doi.org/10.1038/sj.bjc.6605195 (2009).
[DOI: 10.1038/sj.bjc.6605195]
Wang, H. et al. MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 32, 1033–1042, https://doi.org/10.1093/carcin/bgr081 (2011).
[DOI: 10.1093/carcin/bgr081]
Morita, S. et al. miR-29 represses the activities of DNA methyltransferases and DNA demethylases. Int. J. Mol. Sci. 14, 14647–14658, https://doi.org/10.3390/ijms140714647 (2013).
[DOI: 10.3390/ijms140714647]
Mertens, F., Johansson, B., Fioretos, T. & Mitelman, F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer 15, 371–381, https://doi.org/10.1038/nrc3947 (2015).
[DOI: 10.1038/nrc3947]
Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability–an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228, https://doi.org/10.1038/nrm2858 (2010).
[DOI: 10.1038/nrm2858]
Gao, Q. et al. Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Rep. 23, 227–238 e223, https://doi.org/10.1016/j.celrep.2018.03.050 (2018).
[DOI: 10.1016/j.celrep.2018.03.050]
Stransky, N., Cerami, E., Schalm, S., Kim, J. L. & Lengauer, C. The landscape of kinase fusions in cancer. Nat. Commun. 5, 4846, https://doi.org/10.1038/ncomms5846 (2014).
[DOI: 10.1038/ncomms5846]
Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747, https://doi.org/10.1038/s41571-018-0113-0 (2018).
[DOI: 10.1038/s41571-018-0113-0]
Lin, J. J., Riely, G. J., Shaw, A. T. & Targeting, A. L. K. Precision Medicine Takes on Drug Resistance. Cancer Discov. 7, 137–155, https://doi.org/10.1158/2159-8290.CD-16-1123 (2017).
[DOI: 10.1158/2159-8290.CD-16-1123]
Watson, A. J. et al. Identification of selective inhibitors of RET and comparison with current clinical candidates through development and validation of a robust screening cascade. F1000Res 5, 1005, https://doi.org/10.12688/f1000research.8724.2 (2016).
[DOI: 10.12688/f1000research.8724.2]
Sehgal, K., Patell, R., Rangachari, D. & Costa, D. B. Targeting ROS1 rearrangements in non-small cell lung cancer with crizotinib and other kinase inhibitors. Transl. Cancer Res. 7, S779–S786, https://doi.org/10.21037/tcr.2018.08.11 (2018).
[DOI: 10.21037/tcr.2018.08.11]
Bass, A. J. et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat. Genet. 43, 964–968, https://doi.org/10.1038/ng.936 (2011).
[DOI: 10.1038/ng.936]
Cancer Genome, Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nat. 487, 330–337, https://doi.org/10.1038/nature11252 (2012).
[DOI: 10.1038/nature11252]
Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nat. 488, 660–664, https://doi.org/10.1038/nature11282 (2012).
[DOI: 10.1038/nature11282]
Aisner, D. L. et al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol. Cancer Res. 12, 111–118, https://doi.org/10.1158/1541-7786.MCR-13-0479-T (2014).
[DOI: 10.1158/1541-7786.MCR-13-0479-T]
Ardini, E. et al. The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition. Mol. Oncol. 8, 1495–1507, https://doi.org/10.1016/j.molonc.2014.06.001 (2014).
[DOI: 10.1016/j.molonc.2014.06.001]
Le Rolle, A. F. et al. Identification and characterization of RET fusions in advanced colorectal cancer. Oncotarget 6, 28929–28937, https://doi.org/10.18632/oncotarget.4325 (2015).
[DOI: 10.18632/oncotarget.4325]
Wang, W. et al. Molecular subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin. Cancer Biol. 55, 37–52, https://doi.org/10.1016/j.semcancer.2018.05.002 (2019).
[DOI: 10.1016/j.semcancer.2018.05.002]
Alexandrov, L. B. & Stratton, M. R. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr. Opin. Genet. Dev. 24, 52–60, https://doi.org/10.1016/j.gde.2013.11.014 (2014).
[DOI: 10.1016/j.gde.2013.11.014]
Chang, J. et al. Genomic analysis of oesophageal squamous-cell carcinoma identifies alcohol drinking-related mutation signature and genomic alterations. Nat. Commun. 8, 15290, https://doi.org/10.1038/ncomms15290 (2017).
[DOI: 10.1038/ncomms15290]
Li, X. et al. Distinct Subtypes of Gastric Cancer Defined by Molecular Characterization Include Novel Mutational Signatures with Prognostic Capability. Cancer Res. 76, 1724–1732, https://doi.org/10.1158/0008-5472.CAN-15-2443 (2016).
[DOI: 10.1158/0008-5472.CAN-15-2443]
Barras, D. et al. BRAF V600E Mutant Colorectal Cancer Subtypes Based on Gene Expression. Clin. Cancer Res. 23, 104–115, https://doi.org/10.1158/1078-0432.CCR-16-0140 (2017).
[DOI: 10.1158/1078-0432.CCR-16-0140]
Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356, https://doi.org/10.1038/nm.3967 (2015).
[DOI: 10.1038/nm.3967]
Sadanandam, A. et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 19, 619–625, https://doi.org/10.1038/nm.3175 (2013).
[DOI: 10.1038/nm.3175]
Sveen, A. et al. Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies. Clin. Cancer Res. 24, 794–806, https://doi.org/10.1158/1078-0432.CCR-17-1234 (2018).
[DOI: 10.1158/1078-0432.CCR-17-1234]
Dienstmann, R. et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 17, 79–92, https://doi.org/10.1038/nrc.2016.126 (2017).
[DOI: 10.1038/nrc.2016.126]
Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319, https://doi.org/10.1038/ng.3224 (2015).
[DOI: 10.1038/ng.3224]
Fessler, E. et al. TGFbeta signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol. Med. 8, 745–760, https://doi.org/10.15252/emmm.201606184 (2016).
[DOI: 10.15252/emmm.201606184]
Okita, A. et al. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget 9, 18698–18711, https://doi.org/10.18632/oncotarget.24617 (2018).
[DOI: 10.18632/oncotarget.24617]
Cantini, L. et al. MicroRNA-mRNA interactions underlying colorectal cancer molecular subtypes. Nat. Commun. 6, 8878, https://doi.org/10.1038/ncomms9878 (2015).
[DOI: 10.1038/ncomms9878]
Hua, L., Zhou, P., Li, L., Liu, H. & Yang, Z. Prioritizing breast cancer subtype related miRNAs using miRNA-mRNA dysregulated relationships extracted from their dual expression profiling. J. Theor. Biol. 331, 1–11, https://doi.org/10.1016/j.jtbi.2013.04.008 (2013).
[DOI: 10.1016/j.jtbi.2013.04.008]
Xu, T. et al. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data. PLoS one 11, e0152792, https://doi.org/10.1371/journal.pone.0152792 (2016).
[DOI: 10.1371/journal.pone.0152792]
Wang, P. P., Parker, W. T., Branford, S. & Schreiber, A. W. BAM-matcher: a tool for rapid NGS sample matching. Bioinforma. 32, 2699–2701, https://doi.org/10.1093/bioinformatics/btw239 (2016).
[DOI: 10.1093/bioinformatics/btw239]
Markowitz, S. D. & Bertagnolli, M. M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 361, 2449–2460, https://doi.org/10.1056/NEJMra0804588 (2009).
[DOI: 10.1056/NEJMra0804588]
Hagland, H. R., Berg, M., Jolma, I. W., Carlsen, A. & Soreide, K. Molecular pathways and cellular metabolism in colorectal cancer. Dig. Surg. 30, 12–25, https://doi.org/10.1159/000347166 (2013).
[DOI: 10.1159/000347166]
Chou, C. H. et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46, D296–D302, https://doi.org/10.1093/nar/gkx1067 (2018).
[DOI: 10.1093/nar/gkx1067]
Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, https://doi.org/10.7554/eLife.05005 (2015).
Wu, S., Wu, F. & Jiang, Z. Identification of hub genes, key miRNAs and potential molecular mechanisms of colorectal cancer. Oncol. Rep. 38, 2043–2050, https://doi.org/10.3892/or.2017.5930 (2017).
[DOI: 10.3892/or.2017.5930]
Fan, Y. et al. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 44, W135–141, https://doi.org/10.1093/nar/gkw288 (2016).
[DOI: 10.1093/nar/gkw288]
Wagner, A. H. et al. DGIdb 2.0: mining clinically relevant drug-gene interactions. Nucleic Acids Res. 44, D1036–1044, https://doi.org/10.1093/nar/gkv1165 (2016).
[DOI: 10.1093/nar/gkv1165]
Colussi, D., Brandi, G., Bazzoli, F. & Ricciardiello, L. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int. J. Mol. Sci. 14, 16365–16385, https://doi.org/10.3390/ijms140816365 (2013).
[DOI: 10.3390/ijms140816365]
Holder, J. W., Elmore, E. & Barrett, J. C. Gap junction function and cancer. Cancer Res. 53, 3475–3485 (1993).
[PMID: 8393376]
Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406, https://doi.org/10.1083/jcb.201102147 (2012).
[DOI: 10.1083/jcb.201102147]
Okegawa, T., Pong, R. C., Li, Y. & Hsieh, J. T. The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim Pol 51, 445–457, 035001445 (2004).
Haas, B. et al. STAR-Fusion: Fast and Accurate Fusion Transcript Detection from RNA-Seq. bioRxiv, https://doi.org/10.1101/120295 (2017).
Choi, Y. et al. Integrative analysis of oncogenic fusion genes and their functional impact in colorectal cancer. Br. J. Cancer 119, 230–240, https://doi.org/10.1038/s41416-018-0153-3 (2018).
[DOI: 10.1038/s41416-018-0153-3]
Krause, D. S. & Van Etten, R. A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 353, 172–187, https://doi.org/10.1056/NEJMra044389 (2005).
[DOI: 10.1056/NEJMra044389]
Mai, A. et al. Competitive binding of Rab21 and p120RasGAP to integrins regulates receptor traffic and migration. J. Cell Biol. 194, 291–306, https://doi.org/10.1083/jcb.201012126 (2011).
[DOI: 10.1083/jcb.201012126]
Leca, J. et al. Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J. Clin. Invest. 126, 4140–4156, https://doi.org/10.1172/JCI87734 (2016).
[DOI: 10.1172/JCI87734]
Arthurs, C. et al. Expression of ribosomal proteins in normal and cancerous human prostate tissue. PLoS One 12, e0186047, https://doi.org/10.1371/journal.pone.0186047 (2017).
[DOI: 10.1371/journal.pone.0186047]
Eide, P. W., Bruun, J., Lothe, R. A. & Sveen, A. CMScaller: an R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Sci. Rep. 7, 16618, https://doi.org/10.1038/s41598-017-16747-x (2017).
[DOI: 10.1038/s41598-017-16747-x]
Candy, P. A. et al. Notch-induced transcription factors are predictive of survival and 5-fluorouracil response in colorectal cancer patients. Br. J. Cancer 109, 1023–1030, https://doi.org/10.1038/bjc.2013.431 (2013).
[DOI: 10.1038/bjc.2013.431]
Mullany, L. E. et al. Transcription factor-microRNA associations and their impact on colorectal cancer survival. Mol. Carcinog. 56, 2512–2526, https://doi.org/10.1002/mc.22698 (2017).
[DOI: 10.1002/mc.22698]
Virolle, T. et al. Egr1 promotes growth and survival of prostate cancer cells. Identification of novel Egr1 target genes. J. Biol. Chem. 278, 11802–11810, https://doi.org/10.1074/jbc.M210279200 (2003).
[DOI: 10.1074/jbc.M210279200]
Anttila, M. A. et al. Expression of transcription factor AP-2alpha predicts survival in epithelial ovarian cancer. Br. J. Cancer 82, 1974–1983, https://doi.org/10.1054/bjoc.2000.1146 (2000).
[DOI: 10.1054/bjoc.2000.1146]
Castro, M. A. et al. Regulators of genetic risk of breast cancer identified by integrative network analysis. Nat. Genet. 48, 12–21, https://doi.org/10.1038/ng.3458 (2016).
[DOI: 10.1038/ng.3458]
Costa, A. M. et al. GRG5/AES interacts with T-cell factor 4 (TCF4) and downregulates Wnt signaling in human cells and zebrafish embryos. PLoS One 8, e67694, https://doi.org/10.1371/journal.pone.0067694 (2013).
[DOI: 10.1371/journal.pone.0067694]
Chanoumidou, K. et al. Groucho related gene 5 (GRG5) is involved in embryonic and neural stem cell state decisions. Sci. Rep. 8, 13790, https://doi.org/10.1038/s41598-018-31696-9 (2018).
[DOI: 10.1038/s41598-018-31696-9]
Pietrantonio, F. et al. ALK, ROS1, and NTRK Rearrangements in Metastatic Colorectal Cancer. J Natl Cancer Inst 109, https://doi.org/10.1093/jnci/djx089 (2017).
Park, D. Y. et al. NTRK1 fusions for the therapeutic intervention of Korean patients with colon cancer. Oncotarget 7, 8399–8412, https://doi.org/10.18632/oncotarget.6724 (2016).
[DOI: 10.18632/oncotarget.6724]
Amatu, A. et al. Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer. Br. J. Cancer 113, 1730–1734, https://doi.org/10.1038/bjc.2015.401 (2015).
[DOI: 10.1038/bjc.2015.401]
Hong, S. et al. Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: Implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients. Oncoimmunology 5, e1094598, https://doi.org/10.1080/2162402X.2015.1094598 (2016).
[DOI: 10.1080/2162402X.2015.1094598]
Ota, K. et al. Induction of PD-L1 Expression by the EML4-ALK Oncoprotein and Downstream Signaling Pathways in Non-Small Cell Lung Cancer. Clin. Cancer Res. 21, 4014–4021, https://doi.org/10.1158/1078-0432.CCR-15-0016 (2015).
[DOI: 10.1158/1078-0432.CCR-15-0016]
Li, C. et al. Identification of RSPO2 Fusion Mutations and Target Therapy Using a Porcupine Inhibitor. Sci. Rep. 8, 14244, https://doi.org/10.1038/s41598-018-32652-3 (2018).
[DOI: 10.1038/s41598-018-32652-3]
Di Stefano, A. L. et al. Detection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-type Glioma. Clin. Cancer Res. 21, 3307–3317, https://doi.org/10.1158/1078-0432.CCR-14-2199 (2015).
[DOI: 10.1158/1078-0432.CCR-14-2199]
National Comprehensive Cancer Network. Rectal Cancer (Version 1.2019). (2019).
National Comprehensive Cancer Network. Colon Cancer (Version 1.2019). (2019).
Ma, S. et al. Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis. Genome Biol. 19, 142, https://doi.org/10.1186/s13059-018-1511-4 (2018).
[DOI: 10.1186/s13059-018-1511-4]
Zhang, Y. et al. CREPT facilitates colorectal cancer growth through inducing Wnt/beta-catenin pathway by enhancing p300-mediated beta-catenin acetylation. Oncogene 37, 3485–3500, https://doi.org/10.1038/s41388-018-0161-z (2018).
[DOI: 10.1038/s41388-018-0161-z]
Kim, H. J., Moon, S. J., Kim, S. H., Heo, K. & Kim, J. H. DBC1 regulates Wnt/beta-catenin-mediated expression of MACC1, a key regulator of cancer progression, in colon cancer. Cell Death Dis. 9, 831, https://doi.org/10.1038/s41419-018-0899-9 (2018).
[DOI: 10.1038/s41419-018-0899-9]
Rapetti-Mauss, R. et al. Bidirectional KCNQ1:beta-catenin interaction drives colorectal cancer cell differentiation. Proc. Natl Acad. Sci. USA 114, 4159–4164, https://doi.org/10.1073/pnas.1702913114 (2017).
[DOI: 10.1073/pnas.1702913114]
Kumaradevan, S. et al. c-Cbl Expression Correlates with Human Colorectal Cancer Survival and Its Wnt/beta-Catenin Suppressor Function Is Regulated by Tyr371 Phosphorylation. Am. J. Pathol. 188, 1921–1933, https://doi.org/10.1016/j.ajpath.2018.05.007 (2018).
[DOI: 10.1016/j.ajpath.2018.05.007]
de Sousa, E. M. F. et al. Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 9, 476–485, https://doi.org/10.1016/j.stem.2011.10.008 (2011).
[DOI: 10.1016/j.stem.2011.10.008]
Kim, S. H. et al. CpG Island Methylator Phenotype and Methylation of Wnt Pathway Genes Together Predict Survival in Patients with Colorectal Cancer. Yonsei Med. J. 59, 588–594, https://doi.org/10.3349/ymj.2018.59.5.588 (2018).
[DOI: 10.3349/ymj.2018.59.5.588]
Jiang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinforma. 15, 182, https://doi.org/10.1186/1471-2105-15-182 (2014).
[DOI: 10.1186/1471-2105-15-182]
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25, https://doi.org/10.1186/gb-2009-10-3-r25 (2009).
[DOI: 10.1186/gb-2009-10-3-r25]
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinforma. 30, 923–930, https://doi.org/10.1093/bioinformatics/btt656 (2014).
[DOI: 10.1093/bioinformatics/btt656]
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287, https://doi.org/10.1089/omi.2011.0118 (2012).
[DOI: 10.1089/omi.2011.0118]
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinforma. 27, 1739–1740, https://doi.org/10.1093/bioinformatics/btr260 (2011).
[DOI: 10.1093/bioinformatics/btr260]
Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7, https://doi.org/10.1186/1471-2105-14-7 (2013).
[DOI: 10.1186/1471-2105-14-7]
Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–230, https://doi.org/10.1093/nar/gkt1223 (2014).
[DOI: 10.1093/nar/gkt1223]
Brunet, J. P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA 101, 4164–4169, https://doi.org/10.1073/pnas.0308531101 (2004).
[DOI: 10.1073/pnas.0308531101]