Single-Cell Analysis of Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling Development.

Yufeng Lu, Fion Shiau, Wenyang Yi, Suying Lu, Qian Wu, Joel D Pearson, Alyssa Kallman, Suijuan Zhong, Thanh Hoang, Zhentao Zuo, Fangqi Zhao, Mei Zhang, Nicole Tsai, Yan Zhuo, Sheng He, Jun Zhang, Genevieve L Stein-O'Brien, Thomas D Sherman, Xin Duan, Elana J Fertig, Loyal A Goff, Donald J Zack, James T Handa, Tian Xue, Rod Bremner, Seth Blackshaw, Xiaoqun Wang, Brian S Clark
Author Information
  1. Yufeng Lu: State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  2. Fion Shiau: John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
  3. Wenyang Yi: Hefei National Laboratory for Physical Sciences, at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
  4. Suying Lu: Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada.
  5. Qian Wu: State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
  6. Joel D Pearson: Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada.
  7. Alyssa Kallman: Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  8. Suijuan Zhong: State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  9. Thanh Hoang: Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  10. Zhentao Zuo: State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
  11. Fangqi Zhao: Obstetrics and Gynecology Medical Center of Severe Cardiovascular of Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
  12. Mei Zhang: Hefei National Laboratory for Physical Sciences, at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
  13. Nicole Tsai: Departments of Ophthalmology and Physiology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
  14. Yan Zhuo: State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
  15. Sheng He: State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
  16. Jun Zhang: Obstetrics and Gynecology Medical Center of Severe Cardiovascular of Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
  17. Genevieve L Stein-O'Brien: Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  18. Thomas D Sherman: Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  19. Xin Duan: Departments of Ophthalmology and Physiology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
  20. Elana J Fertig: Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Computational Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Mathematical Institute for Data Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  21. Loyal A Goff: Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
  22. Donald J Zack: Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  23. James T Handa: Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  24. Tian Xue: Hefei National Laboratory for Physical Sciences, at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China. Electronic address: xuetian@ustc.edu.cn.
  25. Rod Bremner: Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada. Electronic address: bremner@lunenfeld.ca.
  26. Seth Blackshaw: Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address: sblack@jhmi.edu.
  27. Xiaoqun Wang: State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Brain Disorders, Beijing 100069, China. Electronic address: xiaoqunwang@ibp.ac.cn.
  28. Brian S Clark: John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address: brian.s.clark@wustl.edu.

Abstract

The development of single-cell RNA sequencing (scRNA-seq) has allowed high-resolution analysis of cell-type diversity and transcriptional networks controlling cell-fate specification. To identify the transcriptional networks governing human retinal development, we performed scRNA-seq analysis on 16 time points from developing retina as well as four early stages of retinal organoid differentiation. We identified evolutionarily conserved patterns of gene expression during retinal progenitor maturation and specification of all seven major retinal cell types. Furthermore, we identified gene-expression differences between developing macula and periphery and between distinct populations of horizontal cells. We also identified species-specific patterns of gene expression during human and mouse retinal development. Finally, we identified an unexpected role for ATOH7 expression in regulation of photoreceptor specification during late retinogenesis. These results provide a roadmap to future studies of human retinal development and may help guide the design of cell-based therapies for treating retinal dystrophies.

Keywords

References

  1. Neural Dev. 2014 Feb 05;9:2 [PMID: 24495295]
  2. Anat Rec A Discov Mol Cell Evol Biol. 2005 Nov;287(1):1001-12 [PMID: 16200646]
  3. Dev Biol. 2009 Jun 15;330(2):318-28 [PMID: 19361492]
  4. Nature. 2012 Mar 11;483(7390):465-9 [PMID: 22407321]
  5. Methods Mol Biol. 2012;884:155-65 [PMID: 22688704]
  6. J Comp Neurol. 1991 Jul 1;309(1):86-114 [PMID: 1894769]
  7. Nat Protoc. 2009;4(8):1184-91 [PMID: 19617889]
  8. Bioinformatics. 2012 Mar 15;28(6):882-3 [PMID: 22257669]
  9. Nature. 2014 Oct 16;514(7522):312-3 [PMID: 25252972]
  10. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2303-7 [PMID: 10688875]
  11. Cell. 2019 Mar 7;176(6):1517 [PMID: 30849376]
  12. Dev Cell. 2019 Feb 25;48(4):460-474.e9 [PMID: 30745141]
  13. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  14. PLoS One. 2018 Jul 12;13(7):e0200417 [PMID: 30001398]
  15. Science. 2018 Jun 1;360(6392): [PMID: 29700225]
  16. Nature. 2014 Oct 16;514(7522):385-8 [PMID: 25252974]
  17. Development. 2001 Jul;128(13):2497-508 [PMID: 11493566]
  18. Nature. 2009 Dec 17;462(7275):925-9 [PMID: 20016601]
  19. Development. 2014 Jan;141(2):241-4 [PMID: 24381194]
  20. PLoS Biol. 2004 Sep;2(9):E247 [PMID: 15226823]
  21. Neuron. 2019 Dec 18;104(6):1039-1055.e12 [PMID: 31784286]
  22. Stem Cells. 2019 May;37(5):593-598 [PMID: 30548510]
  23. Cell. 2018 Aug 9;174(4):999-1014.e22 [PMID: 30096314]
  24. J Comp Neurol. 2009 Dec 10;517(5):737-50 [PMID: 19827163]
  25. Nature. 2019 May;569(7754):121-125 [PMID: 31019301]
  26. Cell Rep. 2019 May 7;27(6):1712-1725.e6 [PMID: 31067458]
  27. Development. 2011 Jan;138(2):227-35 [PMID: 21148186]
  28. Glia. 2013 May;61(5):651-78 [PMID: 23440929]
  29. Sci Rep. 2017 Apr 10;7(1):766 [PMID: 28396597]
  30. Vis Neurosci. 1992 Jun;8(6):505-14 [PMID: 1586652]
  31. Cell Stem Cell. 2017 Nov 2;21(5):635-649.e8 [PMID: 29033352]
  32. Genes Dev. 2004 Jul 15;18(14):1681-94 [PMID: 15231717]
  33. PLoS Biol. 2019 Jul 3;17(7):e3000365 [PMID: 31269016]
  34. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  35. Oncogene. 2012 Nov 29;31(48):5019-28 [PMID: 22286767]
  36. Nat Neurosci. 2011 May;14(5):578-86 [PMID: 21441919]
  37. Early Hum Dev. 1994 Aug;38(2):121-9 [PMID: 7851305]
  38. Cell. 2007 Oct 19;131(2):378-90 [PMID: 17956737]
  39. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  40. Invest Ophthalmol Vis Sci. 2019 Jul 1;60(8):2787-2799 [PMID: 31260032]
  41. Nat Rev Neurosci. 2014 Sep;15(9):615-27 [PMID: 25096185]
  42. Nature. 2018 Mar 22;555(7697):524-528 [PMID: 29539641]
  43. J Neurobiol. 1996 Mar;29(3):399-413 [PMID: 8907167]
  44. Nat Neurosci. 2012 Jan 22;15(3):487-95, S1-2 [PMID: 22267162]
  45. Exp Eye Res. 2019 Jul;184:234-242 [PMID: 31075224]
  46. Neuron. 2001 Jun;30(3):725-36 [PMID: 11430806]
  47. Anat Rec. 1985 Jun;212(2):199-205 [PMID: 3842042]
  48. Neuron. 2012 Sep 6;75(5):786-98 [PMID: 22958820]
  49. Cancer Cell. 2004 Jun;5(6):539-51 [PMID: 15193257]
  50. Development. 2006 Apr;133(7):1367-78 [PMID: 16510501]
  51. Cell. 2006 Mar 24;124(6):1283-98 [PMID: 16564017]
  52. Development. 1998 Dec;125(23):4821-33 [PMID: 9806930]
  53. Oncotarget. 2016 Nov 8;7(45):73845-73864 [PMID: 27650546]
  54. Development. 2001 Jan;128(2):217-31 [PMID: 11124117]
  55. Cell Cycle. 2004 Jul;3(7):952-9 [PMID: 15190215]
  56. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  57. Science. 2018 Jun 1;360(6392):981-987 [PMID: 29700229]
  58. Cell. 2019 Feb 21;176(5):1222-1237.e22 [PMID: 30712875]
  59. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  60. Science. 2007 Sep 7;317(5843):1397-400 [PMID: 17690259]
  61. Curr Ophthalmol Rep. 2014 Sep 1;2(3):100-106 [PMID: 25170430]
  62. Cell Syst. 2019 May 22;8(5):395-411.e8 [PMID: 31121116]
  63. Dev Cell. 2017 Dec 18;43(6):763-779.e4 [PMID: 29233477]
  64. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  65. Nat Commun. 2018 Jul 17;9(1):2759 [PMID: 30018341]
  66. Front Neuroanat. 2016 Jul 19;10:77 [PMID: 27486389]
  67. Nat Methods. 2014 Aug;11(8):783-784 [PMID: 25075903]
  68. Nat Methods. 2016 Oct;13(10):845-8 [PMID: 27571553]
  69. Development. 2006 Mar;133(5):913-23 [PMID: 16452096]
  70. Development. 2019 Jan 29;146(2): [PMID: 30696714]
  71. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  72. Exp Eye Res. 2005 Jun;80(6):761-75 [PMID: 15939032]
  73. Dev Biol. 2018 May 1;437(1):27-40 [PMID: 29518376]
  74. Development. 2006 Aug;133(16):3167-77 [PMID: 16854977]
  75. Nat Neurosci. 2010 Jun;13(6):767-75 [PMID: 20436479]
  76. Mol Vis. 2007 Jan 26;13:86-95 [PMID: 17277735]
  77. Neuron. 2019 Jun 19;102(6):1111-1126.e5 [PMID: 31128945]
  78. J Comp Neurol. 1994 May 15;343(3):370-86 [PMID: 8027448]
  79. Nat Commun. 2019 Dec 17;10(1):5743 [PMID: 31848347]
  80. Science. 2018 Oct 12;362(6411): [PMID: 30309916]
  81. Cell. 2009 Jun 12;137(6):1018-31 [PMID: 19524506]
  82. J Neurosci. 1998 Nov 1;18(21):8936-46 [PMID: 9786999]
  83. Genes Dev. 2004 Dec 1;18(23):2952-62 [PMID: 15574596]
  84. J Comp Neurol. 1990 Jan 8;291(2):203-19 [PMID: 2298931]
  85. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  86. Bioinformatics. 2020 Feb 1;36(3):964-965 [PMID: 31400197]
  87. Development. 2019 Sep 9;146(17): [PMID: 31399471]
  88. N Engl J Med. 2008 Jun 12;358(24):2606-17 [PMID: 18550876]
  89. Nature. 2018 Nov;563(7729):72-78 [PMID: 30382198]
  90. Neuron. 2020 Feb 5;105(3):464-474.e6 [PMID: 31812516]
  91. Science. 2015 Mar 6;347(6226):1155-9 [PMID: 25745175]
  92. Science. 2005 Feb 18;307(5712):1098-101 [PMID: 15718470]
  93. Neuron. 1997 Nov;19(5):981-94 [PMID: 9390513]
  94. J Mol Diagn. 2012 Jan;14(1):22-9 [PMID: 22166544]
  95. Cell Rep. 2019 May 7;27(6):1637-1649.e6 [PMID: 31067451]
  96. Development. 2009 May;136(10):1707-15 [PMID: 19395642]
  97. Genome Res. 2020 May;30(5):776-789 [PMID: 32424074]
  98. Dev Biol. 2007 Aug 1;308(1):54-67 [PMID: 17574231]
  99. Bioinformatics. 2005 Aug 15;21(16):3439-40 [PMID: 16082012]
  100. Nat Commun. 2019 Oct 25;10(1):4902 [PMID: 31653841]
  101. Dev Cell. 2017 Jul 10;42(1):68-81.e6 [PMID: 28648799]
  102. Eur J Histochem. 2006 Apr-Jun;50(2):147-54 [PMID: 16864127]
  103. J Comp Neurol. 2007 Nov 1;505(1):58-72 [PMID: 17729288]
  104. Hum Mol Genet. 2012 Aug 15;21(16):3681-94 [PMID: 22645276]
  105. Genes Brain Behav. 2013 Nov;12(8):792-801 [PMID: 24024963]
  106. Cell Res. 2018 Jul;28(7):730-745 [PMID: 29867213]
  107. Cell Rep. 2020 Feb 4;30(5):1644-1659.e4 [PMID: 32023475]
  108. BMC Bioinformatics. 2020 Oct 14;21(1):453 [PMID: 33054706]

Grants

  1. T32 GM007814/NIGMS NIH HHS
  2. T32 GM007618/NIGMS NIH HHS
  3. 153128/Canadian Institute for Health Research
  4. R01 EY030138/NEI NIH HHS
  5. R01 CA177669/NCI NIH HHS
  6. R00 EY027844/NEI NIH HHS

MeSH Term

Aged, 80 and over
Animals
Basic Helix-Loop-Helix Transcription Factors
Biological Evolution
Cell Differentiation
Female
Gene Expression Regulation, Developmental
Humans
Mice
Organogenesis
Retina
Retinal Cone Photoreceptor Cells
Single-Cell Analysis
Species Specificity

Chemicals

ATOH7 protein, human
Basic Helix-Loop-Helix Transcription Factors