Developmental trajectory of prehematopoietic stem cell formation from endothelium.

Qin Zhu, Peng Gao, Joanna Tober, Laura Bennett, Changya Chen, Yasin Uzun, Yan Li, Elizabeth D Howell, Melanie Mumau, Wenbao Yu, Bing He, Nancy A Speck, Kai Tan
Author Information
  1. Qin Zhu: Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA.
  2. Peng Gao: Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and.
  3. Joanna Tober: Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and.
  4. Laura Bennett: Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and.
  5. Changya Chen: Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and.
  6. Yasin Uzun: Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and.
  7. Yan Li: Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and.
  8. Elizabeth D Howell: Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and.
  9. Melanie Mumau: Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and.
  10. Wenbao Yu: Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and.
  11. Bing He: Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and.
  12. Nancy A Speck: Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and.
  13. Kai Tan: Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA.

Abstract

Hematopoietic stem and progenitor cells (HSPCs) in the bone marrow are derived from a small population of hemogenic endothelial (HE) cells located in the major arteries of the mammalian embryo. HE cells undergo an endothelial to hematopoietic cell transition, giving rise to HSPCs that accumulate in intra-arterial clusters (IAC) before colonizing the fetal liver. To examine the cell and molecular transitions between endothelial (E), HE, and IAC cells, and the heterogeneity of HSPCs within IACs, we profiled ���40���000 cells from the caudal arteries (dorsal aorta, umbilical, vitelline) of 9.5 days post coitus (dpc) to 11.5 dpc mouse embryos by single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing. We identified a continuous developmental trajectory from E to HE to IAC cells, with identifiable intermediate stages. The intermediate stage most proximal to HE, which we term pre-HE, is characterized by increased accessibility of chromatin enriched for SOX, FOX, GATA, and SMAD motifs. A developmental bottleneck separates pre-HE from HE, with RUNX1 dosage regulating the efficiency of the pre-HE to HE transition. A distal candidate Runx1 enhancer exhibits high chromatin accessibility specifically in pre-HE cells at the bottleneck, but loses accessibility thereafter. Distinct developmental trajectories within IAC cells result in 2 populations of CD45+ HSPCs; an initial wave of lymphomyeloid-biased progenitors, followed by precursors of hematopoietic stem cells (pre-HSCs). This multiomics single-cell atlas significantly expands our understanding of pre-HSC ontogeny.

References

  1. J Immunol Methods. 2009 Aug 15;347(1-2):70-8 [PMID: 19567251]
  2. Nature. 2007 Jun 21;447(7147):1007-11 [PMID: 17581586]
  3. Blood. 2017 Jul 20;130(3):372-376 [PMID: 28588017]
  4. Nat Cell Biol. 2013 May;15(5):502-10 [PMID: 23604320]
  5. Curr Stem Cell Rep. 2018 Mar;4(1):22-32 [PMID: 29910999]
  6. Haematologica. 2015 Feb;100(2):157-66 [PMID: 25381126]
  7. Development. 2015 Aug 1;142(15):2719-24 [PMID: 26243871]
  8. Mol Cell Biol. 2010 Aug;30(15):3853-63 [PMID: 20516218]
  9. Nature. 2015 Jul 23;523(7561):468-71 [PMID: 26201599]
  10. Nat Methods. 2018 May;15(5):379-386 [PMID: 29630061]
  11. Nature. 2018 Aug;560(7719):494-498 [PMID: 30089906]
  12. Dev Cell. 2014 Dec 8;31(5):640-53 [PMID: 25490269]
  13. Nat Biotechnol. 2019 Apr;37(4):451-460 [PMID: 30899105]
  14. Nat Commun. 2018 Jun 28;9(1):2517 [PMID: 29955049]
  15. Cell Rep. 2018 Feb 6;22(6):1545-1559 [PMID: 29425509]
  16. Dev Cell. 2016 Mar 7;36(5):572-87 [PMID: 26923725]
  17. Exp Hematol. 2018 Apr;60:1-9 [PMID: 29287940]
  18. Nat Biotechnol. 2020 Aug 3;: [PMID: 32747759]
  19. Epigenetics Chromatin. 2019 Jun 4;12(1):33 [PMID: 31164147]
  20. Cell. 2009 May 15;137(4):736-48 [PMID: 19450519]
  21. Nat Biotechnol. 2019 Dec;37(12):1482-1492 [PMID: 31796933]
  22. Development. 2018 Mar 12;145(5): [PMID: 29530939]
  23. Sci Rep. 2017 Oct 17;7(1):13347 [PMID: 29042628]
  24. Genes Dev. 2014 Dec 1;28(23):2597-612 [PMID: 25395663]
  25. Nat Immunol. 2016 Dec;17(12):1424-1435 [PMID: 27695000]
  26. Immunity. 2000 Oct;13(4):423-31 [PMID: 11070161]
  27. Development. 2012 Oct;139(19):3521-30 [PMID: 22899849]
  28. Cell Tissue Res. 2009 Jan;335(1):5-16 [PMID: 18972135]
  29. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  30. J Exp Med. 2018 Jan 2;215(1):233-248 [PMID: 29217535]
  31. Stem Cell Reports. 2014 Mar 20;2(4):457-72 [PMID: 24749071]
  32. Development. 2018 Jan 29;145(2): [PMID: 29361566]
  33. Nature. 2009 Jun 25;459(7250):1131-5 [PMID: 19440194]
  34. Cell Rep. 2019 Dec 17;29(12):4200-4211.e7 [PMID: 31851943]
  35. Development. 1993 Oct;119(2):295-306 [PMID: 7507029]
  36. Blood. 2007 Dec 15;110(13):4188-97 [PMID: 17823307]
  37. J Immunol. 1999 Nov 1;163(9):4788-95 [PMID: 10528178]
  38. Cell Res. 2019 Nov;29(11):881-894 [PMID: 31501518]
  39. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  40. Blood. 2009 Dec 17;114(26):5279-89 [PMID: 19858498]
  41. Cell Res. 2020 May;30(5):376-392 [PMID: 32203131]
  42. Cell Stem Cell. 2013 Nov 7;13(5):535-48 [PMID: 24054998]
  43. Nat Methods. 2017 Oct;14(10):975-978 [PMID: 28825706]
  44. Cell. 2014 Nov 20;159(5):1070-1085 [PMID: 25416946]
  45. Stem Cells. 1996 May;14(3):269-80 [PMID: 8724693]
  46. J Exp Med. 2011 Jun 6;208(6):1305-15 [PMID: 21624936]
  47. Cell Stem Cell. 2008 Aug 7;3(2):207-20 [PMID: 18682242]
  48. Blood. 2009 May 28;113(22):5680-8 [PMID: 19144989]
  49. Development. 2010 Nov;137(21):3651-61 [PMID: 20876651]
  50. Nature. 2016 May 18;533(7604):487-92 [PMID: 27225119]
  51. Blood. 2010 Jul 29;116(4):544-53 [PMID: 20442369]
  52. FEBS Lett. 2019 Dec;593(23):3304-3315 [PMID: 31432499]
  53. Blood. 2012 Jul 12;120(2):314-22 [PMID: 22668850]
  54. Blood. 2004 Apr 1;103(7):2522-9 [PMID: 14630789]
  55. Science. 2019 Mar 8;363(6431):1085-1088 [PMID: 30705153]
  56. Development. 2016 Apr 15;143(8):1284-9 [PMID: 27095492]
  57. Cell Rep. 2016 Oct 4;17(2):458-468 [PMID: 27705794]
  58. Science. 2019 Sep 20;365(6459): [PMID: 31488706]
  59. Exp Cell Res. 2014 Dec 10;329(2):227-33 [PMID: 25447318]
  60. Nat Commun. 2015 Jul 23;6:7739 [PMID: 26204127]
  61. Anat Embryol (Berl). 1995 Nov;192(5):425-35 [PMID: 8546334]
  62. Cell Stem Cell. 2008 Apr 10;2(4):380-91 [PMID: 18397757]
  63. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3444-9 [PMID: 8622955]
  64. Leukemia. 2011 Sep;25(9):1379-88 [PMID: 21566654]
  65. PLoS Genet. 2005 Sep;1(3):e28 [PMID: 16151515]

Grants

  1. R01 HL091724/NHLBI NIH HHS
  2. R01 HD089245/NICHD NIH HHS
  3. R01 HG006130/NHGRI NIH HHS
  4. T32 HD083185/NICHD NIH HHS
  5. R01 GM108716/NIGMS NIH HHS
  6. T32 DK007780/NIDDK NIH HHS
  7. R21 AI133261/NIAID NIH HHS
  8. F31 HL150952/NHLBI NIH HHS
  9. T32 HL007439/NHLBI NIH HHS

MeSH Term

Animals
Cell Differentiation
Core Binding Factor Alpha 2 Subunit
Embryo, Mammalian
Endothelium
Female
Gene Dosage
Gene Expression Regulation, Developmental
Hemangioblasts
Hematopoiesis
Hematopoietic Stem Cells
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Pregnancy
RNA-Seq

Chemicals

Core Binding Factor Alpha 2 Subunit
Runx1 protein, mouse